Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
Abstract Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low v...
Guardado en:
Autores principales: | Erick Costa de Farias, Christian di Noia, Changhee Han, Evis Sala, Mauro Castelli, Leonardo Rundo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c283f93bd5f4101bb799f12bc7956e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Lorena Escudero Sanchez, et al.
Publicado: (2021) -
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
por: Elizabeth P. V. Le, et al.
Publicado: (2021) -
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
por: Nikita Sushentsev, et al.
Publicado: (2021) -
Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients
por: Margherita Mottola, et al.
Publicado: (2021) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021)