Machine learning applied to X-ray tomography as a new tool to analyze the voids in RRP Nb3Sn wires
Abstract The electro-mechanical and electro-thermal properties of high-performance Restacked-Rod-Process (RRP) Nb3Sn wires are key factors in the realization of compact magnets above 15 T for the future particle physics experiments. Combining X-ray micro-tomography with unsupervised machine learning...
Guardado en:
Autores principales: | T. Bagni, G. Bovone, A. Rack, D. Mauro, C. Barth, D. Matera, F. Buta, C. Senatore |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c2aa188eef441879046160f64f00717 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GLAG theory for superconducting property variations with A15 composition in Nb3Sn wires
por: Yingxu Li, et al.
Publicado: (2017) -
Observation of void formation patterns in SnAg films undergoing electromigration and simulation using random walk methods
por: Zhi Jin, et al.
Publicado: (2021) -
Origin of the enhanced Nb3Sn performance by combined Hf and Ta doping
por: Chiara Tarantini, et al.
Publicado: (2021) -
Effect of minor boron on mechanical properties of Ti-Fe-Cu-Sn-Nb alloys
por: GAN Zhi-cong, et al.
Publicado: (2021) -
RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis
por: Muhammad Farooq, et al.
Publicado: (2020)