Stiffness-Oriented Structure Topology Optimization for Hinge-Free Compliant Mechanisms Design

This paper presents a stiffness-oriented structure topology optimization (TO) method for the design of a continuous, hinge-free compliant mechanism (CM). A synthesis formulation is developed to maximize the mechanism’s mutual potential energy (MPE) to achieve required structure flexibility while max...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jincheng Guo, Huaping Tang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/1c2f8645fbcc4c248602d10c4264f68a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents a stiffness-oriented structure topology optimization (TO) method for the design of a continuous, hinge-free compliant mechanism (CM). A synthesis formulation is developed to maximize the mechanism’s mutual potential energy (MPE) to achieve required structure flexibility while maximizing the desired stiffness to withstand the loads. Different from the general approach of maximizing the overall stiffness of the structure, the proposed approach can contribute to guiding the optimization process focus on the desired stiffness in a specified direction by weighting the related eigen-frequency of the corresponding eigenmode. The benefit from this is that we can make full use of the material in micro-level compliant mechanism designs. The single-node connected hinge issue which often happened in optimized design can be precluded by introducing the eigen-frequency constraint into this synthesis formulation. Several obtained hinge-free designs illustrate the validity and robustness of the presented method and offer an alternative method for hinge-free compliant mechanism designs.