Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions
Abstract Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups...
Guardado en:
Autores principales: | Kenneth A. Weber, Rebecca Abbott, Vivie Bojilov, Andrew C. Smith, Marie Wasielewski, Trevor J. Hastie, Todd B. Parrish, Sean Mackey, James M. Elliott |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c3ad2671064454da85d16c2d55f225a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fatty infiltration in cervical flexors and extensors in patients with degenerative cervical myelopathy using a multi-muscle segmentation model.
por: Monica Paliwal, et al.
Publicado: (2021) -
Elastographic Region of Interest Determination for Muscle with Fat Infiltration
por: Yuri T, et al.
Publicado: (2021) -
Fat infiltration in the gluteus minimus muscle in older adults
por: Takano Y, et al.
Publicado: (2018) -
microRNA let-7i-5p mediates the relationship between muscle fat infiltration and neck pain disability following motor vehicle collision: a preliminary study
por: James M. Elliott, et al.
Publicado: (2021) -
The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia
por: Grzegorz Zieliński, et al.
Publicado: (2021)