Minimal control power of controlled dense coding and genuine tripartite entanglement

Abstract We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Changhun Oh, Hoyong Kim, Kabgyun Jeong, Hyunseok Jeong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1c3b736d4aa4413595faee84342cb8c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1c3b736d4aa4413595faee84342cb8c2
record_format dspace
spelling oai:doaj.org-article:1c3b736d4aa4413595faee84342cb8c22021-12-02T12:32:57ZMinimal control power of controlled dense coding and genuine tripartite entanglement10.1038/s41598-017-03822-62045-2322https://doaj.org/article/1c3b736d4aa4413595faee84342cb8c22017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03822-6https://doaj.org/toc/2045-2322Abstract We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize the MCP and so does the standard W state among the W-type states. We find the lower and upper bounds of the MCP and show for pure states that the lower bound, zero, is achieved if and only if the three-qubit state is biseparable or fully separable. The upper bound is achieved only for the standard GHZ state. Since the MCP is nonzero only when three-qubit entanglement exists, this quantity may be a good candidate to measure the degree of genuine tripartite entanglement.Changhun OhHoyong KimKabgyun JeongHyunseok JeongNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Changhun Oh
Hoyong Kim
Kabgyun Jeong
Hyunseok Jeong
Minimal control power of controlled dense coding and genuine tripartite entanglement
description Abstract We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize the MCP and so does the standard W state among the W-type states. We find the lower and upper bounds of the MCP and show for pure states that the lower bound, zero, is achieved if and only if the three-qubit state is biseparable or fully separable. The upper bound is achieved only for the standard GHZ state. Since the MCP is nonzero only when three-qubit entanglement exists, this quantity may be a good candidate to measure the degree of genuine tripartite entanglement.
format article
author Changhun Oh
Hoyong Kim
Kabgyun Jeong
Hyunseok Jeong
author_facet Changhun Oh
Hoyong Kim
Kabgyun Jeong
Hyunseok Jeong
author_sort Changhun Oh
title Minimal control power of controlled dense coding and genuine tripartite entanglement
title_short Minimal control power of controlled dense coding and genuine tripartite entanglement
title_full Minimal control power of controlled dense coding and genuine tripartite entanglement
title_fullStr Minimal control power of controlled dense coding and genuine tripartite entanglement
title_full_unstemmed Minimal control power of controlled dense coding and genuine tripartite entanglement
title_sort minimal control power of controlled dense coding and genuine tripartite entanglement
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/1c3b736d4aa4413595faee84342cb8c2
work_keys_str_mv AT changhunoh minimalcontrolpowerofcontrolleddensecodingandgenuinetripartiteentanglement
AT hoyongkim minimalcontrolpowerofcontrolleddensecodingandgenuinetripartiteentanglement
AT kabgyunjeong minimalcontrolpowerofcontrolleddensecodingandgenuinetripartiteentanglement
AT hyunseokjeong minimalcontrolpowerofcontrolleddensecodingandgenuinetripartiteentanglement
_version_ 1718393904947003392