Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes

Abstract In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified accordi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Azhar Najjar, Elhagag Ahmed Hassan, Nidal Zabermawi, Saber H. Saber, Leena H. Bajrai, Mohammed S. Almuhayawi, Turki S. Abujamel, Saad B. Almasaudi, Leena E. Azhar, Mohammed Moulay, Steve Harakeh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1c49380b4a8547e08d0a4ffd225faa7f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1c49380b4a8547e08d0a4ffd225faa7f
record_format dspace
spelling oai:doaj.org-article:1c49380b4a8547e08d0a4ffd225faa7f2021-12-02T16:31:46ZOptimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes10.1038/s41598-021-93023-z2045-2322https://doaj.org/article/1c49380b4a8547e08d0a4ffd225faa7f2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93023-zhttps://doaj.org/toc/2045-2322Abstract In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm−1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.Azhar NajjarElhagag Ahmed HassanNidal ZabermawiSaber H. SaberLeena H. BajraiMohammed S. AlmuhayawiTurki S. AbujamelSaad B. AlmasaudiLeena E. AzharMohammed MoulaySteve HarakehNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-19 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Azhar Najjar
Elhagag Ahmed Hassan
Nidal Zabermawi
Saber H. Saber
Leena H. Bajrai
Mohammed S. Almuhayawi
Turki S. Abujamel
Saad B. Almasaudi
Leena E. Azhar
Mohammed Moulay
Steve Harakeh
Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
description Abstract In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm−1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.
format article
author Azhar Najjar
Elhagag Ahmed Hassan
Nidal Zabermawi
Saber H. Saber
Leena H. Bajrai
Mohammed S. Almuhayawi
Turki S. Abujamel
Saad B. Almasaudi
Leena E. Azhar
Mohammed Moulay
Steve Harakeh
author_facet Azhar Najjar
Elhagag Ahmed Hassan
Nidal Zabermawi
Saber H. Saber
Leena H. Bajrai
Mohammed S. Almuhayawi
Turki S. Abujamel
Saad B. Almasaudi
Leena E. Azhar
Mohammed Moulay
Steve Harakeh
author_sort Azhar Najjar
title Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
title_short Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
title_full Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
title_fullStr Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
title_full_unstemmed Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes
title_sort optimizing the catalytic activities of methanol and thermotolerant kocuria flava lipases for biodiesel production from cooking oil wastes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1c49380b4a8547e08d0a4ffd225faa7f
work_keys_str_mv AT azharnajjar optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT elhagagahmedhassan optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT nidalzabermawi optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT saberhsaber optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT leenahbajrai optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT mohammedsalmuhayawi optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT turkisabujamel optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT saadbalmasaudi optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT leenaeazhar optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT mohammedmoulay optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
AT steveharakeh optimizingthecatalyticactivitiesofmethanolandthermotolerantkocuriaflavalipasesforbiodieselproductionfromcookingoilwastes
_version_ 1718383858152374272