Spectral solutions for diffusion equations of Riesz distributed-order space-fractional

A highly accurate collocation technique for diffusion equations of Riesz distributed-order space-fractional is consider. A mixed Gauss-Lobatto and Gauss-Radau Legendre collocation technique is introduced to solve the diffusion equations of Riesz distributed-order space-fractional. A full theoretical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamed A. Abdelkawy, Mohamed M. Al-Shomrani
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/1ca221fed3444b4da581552e957d8c8b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1ca221fed3444b4da581552e957d8c8b
record_format dspace
spelling oai:doaj.org-article:1ca221fed3444b4da581552e957d8c8b2021-11-18T04:45:50ZSpectral solutions for diffusion equations of Riesz distributed-order space-fractional1110-016810.1016/j.aej.2021.07.023https://doaj.org/article/1ca221fed3444b4da581552e957d8c8b2022-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S111001682100483Xhttps://doaj.org/toc/1110-0168A highly accurate collocation technique for diffusion equations of Riesz distributed-order space-fractional is consider. A mixed Gauss-Lobatto and Gauss-Radau Legendre collocation technique is introduced to solve the diffusion equations of Riesz distributed-order space-fractional. A full theoretical discussion is given and numerical tests are listed to light the fulfillment and eligibility of the technique. The reliability of our technique to treat the diffusion equations of Riesz distributed-order space-fractional is revealed.Mohamed A. AbdelkawyMohamed M. Al-ShomraniElsevierarticleQuadratureFractional derivativesRiesz space-fractional derivativeCollocation methodEngineering (General). Civil engineering (General)TA1-2040ENAlexandria Engineering Journal, Vol 61, Iss 2, Pp 1045-1054 (2022)
institution DOAJ
collection DOAJ
language EN
topic Quadrature
Fractional derivatives
Riesz space-fractional derivative
Collocation method
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Quadrature
Fractional derivatives
Riesz space-fractional derivative
Collocation method
Engineering (General). Civil engineering (General)
TA1-2040
Mohamed A. Abdelkawy
Mohamed M. Al-Shomrani
Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
description A highly accurate collocation technique for diffusion equations of Riesz distributed-order space-fractional is consider. A mixed Gauss-Lobatto and Gauss-Radau Legendre collocation technique is introduced to solve the diffusion equations of Riesz distributed-order space-fractional. A full theoretical discussion is given and numerical tests are listed to light the fulfillment and eligibility of the technique. The reliability of our technique to treat the diffusion equations of Riesz distributed-order space-fractional is revealed.
format article
author Mohamed A. Abdelkawy
Mohamed M. Al-Shomrani
author_facet Mohamed A. Abdelkawy
Mohamed M. Al-Shomrani
author_sort Mohamed A. Abdelkawy
title Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
title_short Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
title_full Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
title_fullStr Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
title_full_unstemmed Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
title_sort spectral solutions for diffusion equations of riesz distributed-order space-fractional
publisher Elsevier
publishDate 2022
url https://doaj.org/article/1ca221fed3444b4da581552e957d8c8b
work_keys_str_mv AT mohamedaabdelkawy spectralsolutionsfordiffusionequationsofrieszdistributedorderspacefractional
AT mohamedmalshomrani spectralsolutionsfordiffusionequationsofrieszdistributedorderspacefractional
_version_ 1718425024628523008