An equation-of-state-meter of quantum chromodynamics transition from deep learning

The large data generated in heavy-ion collision experiments require careful analysis to understand the physics. Here the authors use the deep-learning method to sort equation of states in QCD transition and analyze the simulated data sets mimicking the heavy-ion collision experiments.

Guardado en:
Detalles Bibliográficos
Autores principales: Long-Gang Pang, Kai Zhou, Nan Su, Hannah Petersen, Horst Stöcker, Xin-Nian Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/1ca7b75f4eb446d4a968181d0b0fb0a1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The large data generated in heavy-ion collision experiments require careful analysis to understand the physics. Here the authors use the deep-learning method to sort equation of states in QCD transition and analyze the simulated data sets mimicking the heavy-ion collision experiments.