A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study

Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi-Ning Dai, Wei Zheng, Qing-Qing Wu, Tian-Chen Hui, Nan-Nan Sun, Guo-Bo Chen, Yong-Xi Tong, Su-Xia Bao, Wen-Hao Wu, Yi-Cheng Huang, Qiao-Qiao Yin, Li-Juan Wu, Li-Xia Yu, Ji-Chan Shi, Nian Fang, Yue-Fei Shen, Xin-Sheng Xie, Chun-Lian Ma, Wan-Jun Yu, Wen-Hui Tu, Rong Yan, Ming-Shan Wang, Mei-Juan Chen, Jia-Jie Zhang, Bin Ju, Hai-Nv Gao, Hai-Jun Huang, Lan-Juan Li, Hong-Ying Pan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd30
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1ca86e8ef78443db85a337ffe341bd30
record_format dspace
spelling oai:doaj.org-article:1ca86e8ef78443db85a337ffe341bd302021-12-02T12:11:34ZA rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study10.1038/s41598-021-83054-x2045-2322https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd302021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83054-xhttps://doaj.org/toc/2045-2322Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.Yi-Ning DaiWei ZhengQing-Qing WuTian-Chen HuiNan-Nan SunGuo-Bo ChenYong-Xi TongSu-Xia BaoWen-Hao WuYi-Cheng HuangQiao-Qiao YinLi-Juan WuLi-Xia YuJi-Chan ShiNian FangYue-Fei ShenXin-Sheng XieChun-Lian MaWan-Jun YuWen-Hui TuRong YanMing-Shan WangMei-Juan ChenJia-Jie ZhangBin JuHai-Nv GaoHai-Jun HuangLan-Juan LiHong-Ying PanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yi-Ning Dai
Wei Zheng
Qing-Qing Wu
Tian-Chen Hui
Nan-Nan Sun
Guo-Bo Chen
Yong-Xi Tong
Su-Xia Bao
Wen-Hao Wu
Yi-Cheng Huang
Qiao-Qiao Yin
Li-Juan Wu
Li-Xia Yu
Ji-Chan Shi
Nian Fang
Yue-Fei Shen
Xin-Sheng Xie
Chun-Lian Ma
Wan-Jun Yu
Wen-Hui Tu
Rong Yan
Ming-Shan Wang
Mei-Juan Chen
Jia-Jie Zhang
Bin Ju
Hai-Nv Gao
Hai-Jun Huang
Lan-Juan Li
Hong-Ying Pan
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
description Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.
format article
author Yi-Ning Dai
Wei Zheng
Qing-Qing Wu
Tian-Chen Hui
Nan-Nan Sun
Guo-Bo Chen
Yong-Xi Tong
Su-Xia Bao
Wen-Hao Wu
Yi-Cheng Huang
Qiao-Qiao Yin
Li-Juan Wu
Li-Xia Yu
Ji-Chan Shi
Nian Fang
Yue-Fei Shen
Xin-Sheng Xie
Chun-Lian Ma
Wan-Jun Yu
Wen-Hui Tu
Rong Yan
Ming-Shan Wang
Mei-Juan Chen
Jia-Jie Zhang
Bin Ju
Hai-Nv Gao
Hai-Jun Huang
Lan-Juan Li
Hong-Ying Pan
author_facet Yi-Ning Dai
Wei Zheng
Qing-Qing Wu
Tian-Chen Hui
Nan-Nan Sun
Guo-Bo Chen
Yong-Xi Tong
Su-Xia Bao
Wen-Hao Wu
Yi-Cheng Huang
Qiao-Qiao Yin
Li-Juan Wu
Li-Xia Yu
Ji-Chan Shi
Nian Fang
Yue-Fei Shen
Xin-Sheng Xie
Chun-Lian Ma
Wan-Jun Yu
Wen-Hui Tu
Rong Yan
Ming-Shan Wang
Mei-Juan Chen
Jia-Jie Zhang
Bin Ju
Hai-Nv Gao
Hai-Jun Huang
Lan-Juan Li
Hong-Ying Pan
author_sort Yi-Ning Dai
title A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_short A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_full A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_fullStr A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_full_unstemmed A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_sort rapid screening model for early predicting novel coronavirus pneumonia in zhejiang province of china: a multicenter study
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd30
work_keys_str_mv AT yiningdai arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT weizheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT qingqingwu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tianchenhui arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT nannansun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT guobochen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yongxitong arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT suxiabao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wenhaowu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yichenghuang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT qiaoqiaoyin arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lijuanwu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lixiayu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jichanshi arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT nianfang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yuefeishen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT xinshengxie arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chunlianma arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wanjunyu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wenhuitu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT rongyan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT mingshanwang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT meijuanchen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jiajiezhang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT binju arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT hainvgao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT haijunhuang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lanjuanli arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT hongyingpan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yiningdai rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT weizheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT qingqingwu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tianchenhui rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT nannansun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT guobochen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yongxitong rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT suxiabao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wenhaowu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yichenghuang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT qiaoqiaoyin rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lijuanwu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lixiayu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jichanshi rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT nianfang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yuefeishen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT xinshengxie rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chunlianma rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wanjunyu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wenhuitu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT rongyan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT mingshanwang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT meijuanchen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jiajiezhang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT binju rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT hainvgao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT haijunhuang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lanjuanli rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT hongyingpan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
_version_ 1718394615986388992