A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang p...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1ca86e8ef78443db85a337ffe341bd30 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1ca86e8ef78443db85a337ffe341bd302021-12-02T12:11:34ZA rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study10.1038/s41598-021-83054-x2045-2322https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd302021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83054-xhttps://doaj.org/toc/2045-2322Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.Yi-Ning DaiWei ZhengQing-Qing WuTian-Chen HuiNan-Nan SunGuo-Bo ChenYong-Xi TongSu-Xia BaoWen-Hao WuYi-Cheng HuangQiao-Qiao YinLi-Juan WuLi-Xia YuJi-Chan ShiNian FangYue-Fei ShenXin-Sheng XieChun-Lian MaWan-Jun YuWen-Hui TuRong YanMing-Shan WangMei-Juan ChenJia-Jie ZhangBin JuHai-Nv GaoHai-Jun HuangLan-Juan LiHong-Ying PanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yi-Ning Dai Wei Zheng Qing-Qing Wu Tian-Chen Hui Nan-Nan Sun Guo-Bo Chen Yong-Xi Tong Su-Xia Bao Wen-Hao Wu Yi-Cheng Huang Qiao-Qiao Yin Li-Juan Wu Li-Xia Yu Ji-Chan Shi Nian Fang Yue-Fei Shen Xin-Sheng Xie Chun-Lian Ma Wan-Jun Yu Wen-Hui Tu Rong Yan Ming-Shan Wang Mei-Juan Chen Jia-Jie Zhang Bin Ju Hai-Nv Gao Hai-Jun Huang Lan-Juan Li Hong-Ying Pan A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
description |
Abstract Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP. |
format |
article |
author |
Yi-Ning Dai Wei Zheng Qing-Qing Wu Tian-Chen Hui Nan-Nan Sun Guo-Bo Chen Yong-Xi Tong Su-Xia Bao Wen-Hao Wu Yi-Cheng Huang Qiao-Qiao Yin Li-Juan Wu Li-Xia Yu Ji-Chan Shi Nian Fang Yue-Fei Shen Xin-Sheng Xie Chun-Lian Ma Wan-Jun Yu Wen-Hui Tu Rong Yan Ming-Shan Wang Mei-Juan Chen Jia-Jie Zhang Bin Ju Hai-Nv Gao Hai-Jun Huang Lan-Juan Li Hong-Ying Pan |
author_facet |
Yi-Ning Dai Wei Zheng Qing-Qing Wu Tian-Chen Hui Nan-Nan Sun Guo-Bo Chen Yong-Xi Tong Su-Xia Bao Wen-Hao Wu Yi-Cheng Huang Qiao-Qiao Yin Li-Juan Wu Li-Xia Yu Ji-Chan Shi Nian Fang Yue-Fei Shen Xin-Sheng Xie Chun-Lian Ma Wan-Jun Yu Wen-Hui Tu Rong Yan Ming-Shan Wang Mei-Juan Chen Jia-Jie Zhang Bin Ju Hai-Nv Gao Hai-Jun Huang Lan-Juan Li Hong-Ying Pan |
author_sort |
Yi-Ning Dai |
title |
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_short |
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_full |
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_fullStr |
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_full_unstemmed |
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_sort |
rapid screening model for early predicting novel coronavirus pneumonia in zhejiang province of china: a multicenter study |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1ca86e8ef78443db85a337ffe341bd30 |
work_keys_str_mv |
AT yiningdai arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT weizheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT qingqingwu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tianchenhui arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT nannansun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT guobochen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yongxitong arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT suxiabao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wenhaowu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yichenghuang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT qiaoqiaoyin arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lijuanwu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lixiayu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jichanshi arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT nianfang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yuefeishen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT xinshengxie arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chunlianma arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wanjunyu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wenhuitu arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT rongyan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT mingshanwang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT meijuanchen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jiajiezhang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT binju arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT hainvgao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT haijunhuang arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lanjuanli arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT hongyingpan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yiningdai rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT weizheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT qingqingwu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tianchenhui rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT nannansun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT guobochen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yongxitong rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT suxiabao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wenhaowu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yichenghuang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT qiaoqiaoyin rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lijuanwu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lixiayu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jichanshi rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT nianfang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yuefeishen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT xinshengxie rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chunlianma rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wanjunyu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wenhuitu rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT rongyan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT mingshanwang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT meijuanchen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jiajiezhang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT binju rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT hainvgao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT haijunhuang rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lanjuanli rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT hongyingpan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy |
_version_ |
1718394615986388992 |