Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques
<i>Background and Objectives</i>: Determining the presence or absence of cochlear dead regions (DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model that applies oversampling techniques for predicting DRs in patients. <i>Materials and Meth...
Guardado en:
Autores principales: | Young-Soo Chang, Hee-Sung Park, Il-Joon Moon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1caa348bdf074d1fb840d4a2927862d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
IMPROVING STUDENTS PERFORMANCE PREDICTION USING MACHINE LEARNING AND SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
por: Nibras Z. Salih, et al.
Publicado: (2021) -
A Comparative Analysis of Machine Learning Models for the Prediction of Insurance Uptake in Kenya
por: Nelson Kemboi Yego, et al.
Publicado: (2021) -
Oversampling and replacement strategies in propensity score matching: a critical review focused on small sample size in clinical settings
por: Daniele Bottigliengo, et al.
Publicado: (2021) -
Predicting Depression: a comparative study of machine learning approaches based on language usage.
por: Luciana Mariñelarena-Dondena, et al.
Publicado: (2017) -
Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
por: Giulia Varotto, et al.
Publicado: (2021)