Machine Learning-Based HIV Risk Estimation Using Incidence Rate Ratios
HIV/AIDS is an ongoing global pandemic, with an estimated 39 million infected worldwide. Early detection is anticipated to help improve outcomes and prevent further infections. Point-of-care diagnostics make HIV/AIDS diagnoses available both earlier and to a broader population. Wide-spread and autom...
Guardado en:
Autores principales: | Oliver Haas, Andreas Maier, Eva Rothgang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cb6aaa04f004d548bf2faf1f47a3090 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correction to: Evaluation of intra-ovarian platelet-rich plasma administration on oocytes-dependent variables in patients with poor ovarian response: a retrospective study according to the POSEIDON criteria
por: Marzieh Farimani, et al.
Publicado: (2021) -
Rule-Based Models for Risk Estimation and Analysis of In-hospital Mortality in Emergency and Critical Care
por: Oliver Haas, et al.
Publicado: (2021) -
Experiences With Safer Conception Services for HIV-Serodiscordant Couples at a Referral Hospital in Nairobi, Kenya
por: Anne Kaggiah, et al.
Publicado: (2021) -
Incidence of pregnancy loss and characterization of fetal development in red pandas
por: Jenna Lowe, et al.
Publicado: (2021) -
Icariin improves testicular dysfunction via enhancing proliferation and inhibiting mitochondria-dependent apoptosis pathway in high-fat diet and streptozotocin-induced diabetic rats
por: Weiguo He, et al.
Publicado: (2021)