Software Fault Localization through Aggregation-Based Neural Ranking for Static and Dynamic Features Selection
The automatic localization of software faults plays a critical role in assisting software professionals in fixing problems quickly. Despite various existing models for fault tolerance based on static features, localization is still challenging. By considering the dynamic features, the capabilities o...
Guardado en:
Autor principal: | Abdulaziz Alhumam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cc1339545bc42fe9c2bc1dbd2d9bdb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Empirical Study of Training Data Selection Methods for Ranking-Oriented Cross-Project Defect Prediction
por: Haoyu Luo, et al.
Publicado: (2021) -
Towards the Integration of Reliability and Security Mechanisms to Enhance the Fault Resilience of Neural Networks
por: Nikolaos Ioannis Deligiannis, et al.
Publicado: (2021) -
Application of Convolutional Neural Network in Fault Line Selection of Distribution Network
por: Jingjing Tian, et al.
Publicado: (2021) -
Evaluation of Deep Neural Network Compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme
por: Olutosin Ajibola Ademola, et al.
Publicado: (2021) -
Software Defect Prediction Using Wrapper Feature Selection Based on Dynamic Re-Ranking Strategy
por: Abdullateef Oluwagbemiga Balogun, et al.
Publicado: (2021)