Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure
Andrea L Armstead,1,2 Bingyun Li1–3 1Department of Orthopaedics, School of Medicine, 2School of Pharmacy, West Virginia University, 3Mary Babb Randolph Cancer Center, Morgantown, WV, USA Abstract: As the number of commercial and consumer products containing engineered nanomaterials (ENMs...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cc1dfb206164ccc97bb29eb2bc4fa27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Andrea L Armstead,1,2 Bingyun Li1–3 1Department of Orthopaedics, School of Medicine, 2School of Pharmacy, West Virginia University, 3Mary Babb Randolph Cancer Center, Morgantown, WV, USA Abstract: As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed. Keywords: engineered nanomaterial, occupational exposure, lung disease, cancer, toxicity, particle |
---|