Taming nucleon density distributions with deep neural network
With the datasets of the density distributions calculated by Skyrme density functional theories, we elaborated deep neural networks to generate the density profile and provide a table of related hyperparameters set for similar applications of other structural models. In the process of machine learni...
Guardado en:
Autores principales: | Zu-Xing Yang, Xiao-Hua Fan, Peng Yin, Wei Zuo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cd0c4711f174ceeacd82d62fccdcfbf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Light-cone distribution amplitudes of the nucleon and ∆ baryon
por: June-Young Kim, et al.
Publicado: (2021) -
Gluon PDF from quark dressing in the nucleon and pion
por: Adam Freese, et al.
Publicado: (2021) -
Taming the Chaos in Neural Network Time Series Predictions
por: Sebastian Raubitzek, et al.
Publicado: (2021) -
Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium
por: Cédric Lorcé, et al.
Publicado: (2021) -
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
por: Qianyi Li, et al.
Publicado: (2021)