Translating synthetic natural language to database queries with a polyglot deep learning framework
Abstract The number of databases as well as their size and complexity is increasing. This creates a barrier to use especially for non-experts, who have to come to grips with the nature of the data, the way it has been represented in the database, and the specific query languages or user interfaces b...
Enregistré dans:
Auteurs principaux: | Adrián Bazaga, Nupur Gunwant, Gos Micklem |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1cd9a00efc4c4af795a5321ffe3aca56 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An adaptive spark-based framework for querying large-scale NoSQL and relational databases.
par: Eman Khashan, et autres
Publié: (2021) -
A deep database of medical abbreviations and acronyms for natural language processing
par: Lisa Grossman Liu, et autres
Publié: (2021) -
Development of a Structured Query Language and Natural Language Processing Algorithm to Identify Lung Nodules in a Cancer Centre
par: Benjamin Hunter, et autres
Publié: (2021) -
A new framework based on features modeling and ensemble learning to predict query performance.
par: Mohamed Zaghloul, et autres
Publié: (2021) - Microsoft query