Translating synthetic natural language to database queries with a polyglot deep learning framework
Abstract The number of databases as well as their size and complexity is increasing. This creates a barrier to use especially for non-experts, who have to come to grips with the nature of the data, the way it has been represented in the database, and the specific query languages or user interfaces b...
Guardado en:
Autores principales: | Adrián Bazaga, Nupur Gunwant, Gos Micklem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cd9a00efc4c4af795a5321ffe3aca56 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An adaptive spark-based framework for querying large-scale NoSQL and relational databases.
por: Eman Khashan, et al.
Publicado: (2021) -
A deep database of medical abbreviations and acronyms for natural language processing
por: Lisa Grossman Liu, et al.
Publicado: (2021) -
Development of a Structured Query Language and Natural Language Processing Algorithm to Identify Lung Nodules in a Cancer Centre
por: Benjamin Hunter, et al.
Publicado: (2021) -
A new framework based on features modeling and ensemble learning to predict query performance.
por: Mohamed Zaghloul, et al.
Publicado: (2021) - Microsoft query