Detecting informative higher-order interactions in statistically validated hypergraphs

The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statist...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Federico Musciotto, Federico Battiston, Rosario N. Mantegna
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1ce10e574e424627ab206e9d3d8dedc3
record_format dspace
spelling oai:doaj.org-article:1ce10e574e424627ab206e9d3d8dedc32021-12-02T18:13:53ZDetecting informative higher-order interactions in statistically validated hypergraphs10.1038/s42005-021-00710-42399-3650https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc32021-09-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00710-4https://doaj.org/toc/2399-3650The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statistically validated hypergraphs, showing on synthetic benchmarks and real-world systems that the highlighted hyperlinks are more informative than those extracted with traditional pairwise approaches.Federico MusciottoFederico BattistonRosario N. MantegnaNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Federico Musciotto
Federico Battiston
Rosario N. Mantegna
Detecting informative higher-order interactions in statistically validated hypergraphs
description The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statistically validated hypergraphs, showing on synthetic benchmarks and real-world systems that the highlighted hyperlinks are more informative than those extracted with traditional pairwise approaches.
format article
author Federico Musciotto
Federico Battiston
Rosario N. Mantegna
author_facet Federico Musciotto
Federico Battiston
Rosario N. Mantegna
author_sort Federico Musciotto
title Detecting informative higher-order interactions in statistically validated hypergraphs
title_short Detecting informative higher-order interactions in statistically validated hypergraphs
title_full Detecting informative higher-order interactions in statistically validated hypergraphs
title_fullStr Detecting informative higher-order interactions in statistically validated hypergraphs
title_full_unstemmed Detecting informative higher-order interactions in statistically validated hypergraphs
title_sort detecting informative higher-order interactions in statistically validated hypergraphs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc3
work_keys_str_mv AT federicomusciotto detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs
AT federicobattiston detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs
AT rosarionmantegna detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs
_version_ 1718378437818712064