Detecting informative higher-order interactions in statistically validated hypergraphs
The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statist...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1ce10e574e424627ab206e9d3d8dedc3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1ce10e574e424627ab206e9d3d8dedc32021-12-02T18:13:53ZDetecting informative higher-order interactions in statistically validated hypergraphs10.1038/s42005-021-00710-42399-3650https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc32021-09-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00710-4https://doaj.org/toc/2399-3650The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statistically validated hypergraphs, showing on synthetic benchmarks and real-world systems that the highlighted hyperlinks are more informative than those extracted with traditional pairwise approaches.Federico MusciottoFederico BattistonRosario N. MantegnaNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Astrophysics QB460-466 Physics QC1-999 Federico Musciotto Federico Battiston Rosario N. Mantegna Detecting informative higher-order interactions in statistically validated hypergraphs |
description |
The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statistically validated hypergraphs, showing on synthetic benchmarks and real-world systems that the highlighted hyperlinks are more informative than those extracted with traditional pairwise approaches. |
format |
article |
author |
Federico Musciotto Federico Battiston Rosario N. Mantegna |
author_facet |
Federico Musciotto Federico Battiston Rosario N. Mantegna |
author_sort |
Federico Musciotto |
title |
Detecting informative higher-order interactions in statistically validated hypergraphs |
title_short |
Detecting informative higher-order interactions in statistically validated hypergraphs |
title_full |
Detecting informative higher-order interactions in statistically validated hypergraphs |
title_fullStr |
Detecting informative higher-order interactions in statistically validated hypergraphs |
title_full_unstemmed |
Detecting informative higher-order interactions in statistically validated hypergraphs |
title_sort |
detecting informative higher-order interactions in statistically validated hypergraphs |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc3 |
work_keys_str_mv |
AT federicomusciotto detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs AT federicobattiston detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs AT rosarionmantegna detectinginformativehigherorderinteractionsinstatisticallyvalidatedhypergraphs |
_version_ |
1718378437818712064 |