Detecting informative higher-order interactions in statistically validated hypergraphs
The increasing availability of new data on biological and sociotechnical systems highlights the importance of well grounded filtering techniques to separate meaningful interactions from noise. In this work the authors propose the first method to detect informative connections of any order in statist...
Guardado en:
Autores principales: | Federico Musciotto, Federico Battiston, Rosario N. Mantegna |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ce10e574e424627ab206e9d3d8dedc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hypergraph reconstruction from network data
por: Jean-Gabriel Young, et al.
Publicado: (2021) -
Phase transitions and stability of dynamical processes on hypergraphs
por: Guilherme Ferraz de Arruda, et al.
Publicado: (2021) -
Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs
por: Anton Eriksson, et al.
Publicado: (2021) -
Publisher Correction: Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021)