Semantic segmentation of PolSAR image data using advanced deep learning model
Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between h...
Guardado en:
Autores principales: | Rajat Garg, Anil Kumar, Nikunj Bansal, Manish Prateek, Shashi Kumar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cf38e28059342df904fa33136f6fc22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Model-Based Interpretation of PolSAR Data for the Characterization of Glacier Zones in Greenland
por: Giuseppe Parrella, et al.
Publicado: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021) -
Dark spot detection for characterization of marine surface slicks using UAVSAR quad-pol data
por: Vaishali Chaudhary, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
Indoor/Outdoor Semantic Segmentation Using Deep Learning for Visually Impaired Wheelchair Users
por: Elhassan Mohamed, et al.
Publicado: (2021)