Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1cfb2a52efde411cadce97ce5aca5998 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1cfb2a52efde411cadce97ce5aca5998 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1cfb2a52efde411cadce97ce5aca59982021-11-11T18:21:10ZDoss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>10.3390/math92128252227-7390https://doaj.org/article/1cfb2a52efde411cadce97ce5aca59982021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2825https://doaj.org/toc/2227-7390In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.Marko KostićWei-Shih DuVladimir E. FedorovMDPI AGarticleDoss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>Lebesgue spaces with variable exponentsabstract Volterra integro-differential equationsMathematicsQA1-939ENMathematics, Vol 9, Iss 2825, p 2825 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup> Lebesgue spaces with variable exponents abstract Volterra integro-differential equations Mathematics QA1-939 |
spellingShingle |
Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup> Lebesgue spaces with variable exponents abstract Volterra integro-differential equations Mathematics QA1-939 Marko Kostić Wei-Shih Du Vladimir E. Fedorov Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
description |
In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given. |
format |
article |
author |
Marko Kostić Wei-Shih Du Vladimir E. Fedorov |
author_facet |
Marko Kostić Wei-Shih Du Vladimir E. Fedorov |
author_sort |
Marko Kostić |
title |
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
title_short |
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
title_full |
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
title_fullStr |
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
title_full_unstemmed |
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
title_sort |
doss <i>ρ</i>-almost periodic type functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">r</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup> |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/1cfb2a52efde411cadce97ce5aca5998 |
work_keys_str_mv |
AT markokostic dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup AT weishihdu dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup AT vladimirefedorov dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup |
_version_ |
1718431868967190528 |