Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>

In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marko Kostić, Wei-Shih Du, Vladimir E. Fedorov
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1cfb2a52efde411cadce97ce5aca5998
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1cfb2a52efde411cadce97ce5aca5998
record_format dspace
spelling oai:doaj.org-article:1cfb2a52efde411cadce97ce5aca59982021-11-11T18:21:10ZDoss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>10.3390/math92128252227-7390https://doaj.org/article/1cfb2a52efde411cadce97ce5aca59982021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2825https://doaj.org/toc/2227-7390In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.Marko KostićWei-Shih DuVladimir E. FedorovMDPI AGarticleDoss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>Lebesgue spaces with variable exponentsabstract Volterra integro-differential equationsMathematicsQA1-939ENMathematics, Vol 9, Iss 2825, p 2825 (2021)
institution DOAJ
collection DOAJ
language EN
topic Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>
Lebesgue spaces with variable exponents
abstract Volterra integro-differential equations
Mathematics
QA1-939
spellingShingle Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>
Lebesgue spaces with variable exponents
abstract Volterra integro-differential equations
Mathematics
QA1-939
Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
description In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.
format article
author Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
author_facet Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
author_sort Marko Kostić
title Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_short Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_full Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_fullStr Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_full_unstemmed Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_sort doss <i>ρ</i>-almost periodic type functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">r</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1cfb2a52efde411cadce97ce5aca5998
work_keys_str_mv AT markokostic dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup
AT weishihdu dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup
AT vladimirefedorov dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup
_version_ 1718431868967190528