Leveraging the Cell Ontology to classify unseen cell types
Classifying cells into unseen cell types remains challenging in scRNA-seq analysis. Here we show that Cell Ontology enables an accurate classification of unseen cell types through considering the cell type relationships in the Cell Ontology graph.
Guardado en:
Autores principales: | Sheng Wang, Angela Oliveira Pisco, Aaron McGeever, Maria Brbic, Marinka Zitnik, Spyros Darmanis, Jure Leskovec, Jim Karkanias, Russ B. Altman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d09fe5933a6428fb050655243e85aa0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prioritizing network communities
por: Marinka Zitnik, et al.
Publicado: (2018) -
Identification of disease treatment mechanisms through the multiscale interactome
por: Camilo Ruiz, et al.
Publicado: (2021) -
Network enhancement as a general method to denoise weighted biological networks
por: Bo Wang, et al.
Publicado: (2018) -
Entropy of radiation: the unseen side of light
por: Alfonso Delgado-Bonal
Publicado: (2017) -
Ravens attribute visual access to unseen competitors
por: Thomas Bugnyar, et al.
Publicado: (2016)