Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol

Yao Meng,1,2 Shuangfeng Liu,1 Juan Li,3 Yanfa Meng,3 Xiaojun Zhao2,41School of Medical Laboratory Science, Chengdu Medical College, Chengdu, China; 2West China Hospital Laboratory of Nanomedicine and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, China; 3K...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Meng Y, Liu S, Li J, Zhao X
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/1d1a3ddc6f0d40c08d0673edc19d295e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1d1a3ddc6f0d40c08d0673edc19d295e
record_format dspace
spelling oai:doaj.org-article:1d1a3ddc6f0d40c08d0673edc19d295e2021-12-02T06:30:31ZPreparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol1176-91141178-2013https://doaj.org/article/1d1a3ddc6f0d40c08d0673edc19d295e2012-06-01T00:00:00Zhttp://www.dovepress.com/preparation-of-an-antitumor-and-antivirus-agent-chemical-modification--a10245https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Yao Meng,1,2 Shuangfeng Liu,1 Juan Li,3 Yanfa Meng,3 Xiaojun Zhao2,41School of Medical Laboratory Science, Chengdu Medical College, Chengdu, China; 2West China Hospital Laboratory of Nanomedicine and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, China; 3Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, China; 4Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USABackground: Alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30) derived from Momordica charantia L. have been confirmed to possess antitumor and antivirus activities due to their RNA-N-glycosidase activity. However, strong immunogenicity and short plasma half-life limit their clinical application. To solve this problem, the two proteins were modified with (mPEG)2-Lys-NHS (20 kDa).Methodology/principal findings: In this article, a novel purification strategy for the two main type I ribosome-inactivating proteins (RIPs), α-MMC and MAP30, was successfully developed for laboratory-scale preparation. Using this dramatic method, 200 mg of α-MMC and about 120 mg of MAP30 was obtained in only one purification process from 200 g of Momordica charantia seeds. The homogeneity and some other properties of the two proteins were assessed by gradient SDS-PAGE, electrospray ionization quadruple mass spectrometry, and N-terminal sequence analysis as well as Western blot. Two polyethylene glycol (PEG)ylated proteins were synthesized and purified. Homogeneous mono-, di-, or tri-PEGylated proteins were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The analysis of antitumor and antivirus activities indicated that the serial PEGylated RIPs preserved moderate activities on JAR choriocarcinoma cells and herpes simplex virus-1. Furthermore, both PEGylated proteins showed about 60%–70% antitumor and antivirus activities, and at the same time decreased 50%–70% immunogenicity when compared with their unmodified counterparts.Conclusion/significance: α-MMC and MAP30 obtained from this novel purification strategy can meet the requirement of a large amount of samples for research. Their chemical modification can solve the problem of strong immunogenicity and meanwhile preserve moderate activities. All these findings suggest the potential application of PEGylated α-MMC and PEGylated MAP30 as antitumor and antivirus agents. According to these results, PEGylated RIPs can be constructed with nanomaterials to be a targeting drug that can further decrease immunogenicity and side effects. Through nanotechnology we can make them low-release drugs, which can further prolong their half-life period in the human body.Keywords: ribosome-inactivating proteins, alpha-momorcharin, momordica anti-HIV protein, antitumor, antivirus, (mPEG)2-Lys-NHS (20 kDa), immunogenicityMeng YLiu SLi JMeng YZhao XDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 3133-3142 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Meng Y
Liu S
Li J
Meng Y
Zhao X
Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
description Yao Meng,1,2 Shuangfeng Liu,1 Juan Li,3 Yanfa Meng,3 Xiaojun Zhao2,41School of Medical Laboratory Science, Chengdu Medical College, Chengdu, China; 2West China Hospital Laboratory of Nanomedicine and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, China; 3Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, China; 4Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USABackground: Alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30) derived from Momordica charantia L. have been confirmed to possess antitumor and antivirus activities due to their RNA-N-glycosidase activity. However, strong immunogenicity and short plasma half-life limit their clinical application. To solve this problem, the two proteins were modified with (mPEG)2-Lys-NHS (20 kDa).Methodology/principal findings: In this article, a novel purification strategy for the two main type I ribosome-inactivating proteins (RIPs), α-MMC and MAP30, was successfully developed for laboratory-scale preparation. Using this dramatic method, 200 mg of α-MMC and about 120 mg of MAP30 was obtained in only one purification process from 200 g of Momordica charantia seeds. The homogeneity and some other properties of the two proteins were assessed by gradient SDS-PAGE, electrospray ionization quadruple mass spectrometry, and N-terminal sequence analysis as well as Western blot. Two polyethylene glycol (PEG)ylated proteins were synthesized and purified. Homogeneous mono-, di-, or tri-PEGylated proteins were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The analysis of antitumor and antivirus activities indicated that the serial PEGylated RIPs preserved moderate activities on JAR choriocarcinoma cells and herpes simplex virus-1. Furthermore, both PEGylated proteins showed about 60%–70% antitumor and antivirus activities, and at the same time decreased 50%–70% immunogenicity when compared with their unmodified counterparts.Conclusion/significance: α-MMC and MAP30 obtained from this novel purification strategy can meet the requirement of a large amount of samples for research. Their chemical modification can solve the problem of strong immunogenicity and meanwhile preserve moderate activities. All these findings suggest the potential application of PEGylated α-MMC and PEGylated MAP30 as antitumor and antivirus agents. According to these results, PEGylated RIPs can be constructed with nanomaterials to be a targeting drug that can further decrease immunogenicity and side effects. Through nanotechnology we can make them low-release drugs, which can further prolong their half-life period in the human body.Keywords: ribosome-inactivating proteins, alpha-momorcharin, momordica anti-HIV protein, antitumor, antivirus, (mPEG)2-Lys-NHS (20 kDa), immunogenicity
format article
author Meng Y
Liu S
Li J
Meng Y
Zhao X
author_facet Meng Y
Liu S
Li J
Meng Y
Zhao X
author_sort Meng Y
title Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
title_short Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
title_full Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
title_fullStr Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
title_full_unstemmed Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol
title_sort preparation of an antitumor and antivirus agent: chemical modification of α-mmc and map30 from momordica charantia l. with covalent conjugation of polyethyelene glycol
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/1d1a3ddc6f0d40c08d0673edc19d295e
work_keys_str_mv AT mengy preparationofanantitumorandantivirusagentchemicalmodificationofampalphammcandmap30frommomordicacharantialwithcovalentconjugationofpolyethyeleneglycol
AT lius preparationofanantitumorandantivirusagentchemicalmodificationofampalphammcandmap30frommomordicacharantialwithcovalentconjugationofpolyethyeleneglycol
AT lij preparationofanantitumorandantivirusagentchemicalmodificationofampalphammcandmap30frommomordicacharantialwithcovalentconjugationofpolyethyeleneglycol
AT mengy preparationofanantitumorandantivirusagentchemicalmodificationofampalphammcandmap30frommomordicacharantialwithcovalentconjugationofpolyethyeleneglycol
AT zhaox preparationofanantitumorandantivirusagentchemicalmodificationofampalphammcandmap30frommomordicacharantialwithcovalentconjugationofpolyethyeleneglycol
_version_ 1718399862242803712