Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury

Abstract Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses us...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter R. Corridon, Shurooq H. Karam, Ali A. Khraibi, Anousha A. Khan, Mohamed A. Alhashmi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1d242833175e47b8b5aa050926f91ffe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1d242833175e47b8b5aa050926f91ffe
record_format dspace
spelling oai:doaj.org-article:1d242833175e47b8b5aa050926f91ffe2021-12-02T14:27:56ZIntravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury10.1038/s41598-021-87807-62045-2322https://doaj.org/article/1d242833175e47b8b5aa050926f91ffe2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87807-6https://doaj.org/toc/2045-2322Abstract Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.Peter R. CorridonShurooq H. KaramAli A. KhraibiAnousha A. KhanMohamed A. AlhashmiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Peter R. Corridon
Shurooq H. Karam
Ali A. Khraibi
Anousha A. Khan
Mohamed A. Alhashmi
Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
description Abstract Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.
format article
author Peter R. Corridon
Shurooq H. Karam
Ali A. Khraibi
Anousha A. Khan
Mohamed A. Alhashmi
author_facet Peter R. Corridon
Shurooq H. Karam
Ali A. Khraibi
Anousha A. Khan
Mohamed A. Alhashmi
author_sort Peter R. Corridon
title Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
title_short Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
title_full Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
title_fullStr Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
title_full_unstemmed Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
title_sort intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1d242833175e47b8b5aa050926f91ffe
work_keys_str_mv AT peterrcorridon intravitalimagingofrealtimeendogenousactindysregulationinproximalanddistaltubulesattheonsetofsevereischemiareperfusioninjury
AT shurooqhkaram intravitalimagingofrealtimeendogenousactindysregulationinproximalanddistaltubulesattheonsetofsevereischemiareperfusioninjury
AT aliakhraibi intravitalimagingofrealtimeendogenousactindysregulationinproximalanddistaltubulesattheonsetofsevereischemiareperfusioninjury
AT anoushaakhan intravitalimagingofrealtimeendogenousactindysregulationinproximalanddistaltubulesattheonsetofsevereischemiareperfusioninjury
AT mohamedaalhashmi intravitalimagingofrealtimeendogenousactindysregulationinproximalanddistaltubulesattheonsetofsevereischemiareperfusioninjury
_version_ 1718391237500731392