Tinnitus distress is associated with enhanced resting-state functional connectivity within the default mode network

Yu-Chen Chen,1,2 Huiyou Chen,2 Fan Bo,2 Jin-Jing Xu,3 Yi Deng,3 Han Lv,4 Yuexin Cai,5 Wenqing Xia,6 Xindao Yin,2 Jian-Ping Gu,2 Guangming Lu1 1Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China; 2Department of Radiology, Nanjing First Hospital, N...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chen YC, Chen H, Bo F, Xu JJ, Deng Y, Lv H, Cai Y, Xia W, Yin X, Gu JP, Lu GM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/1d360a1a154f443d9ae21cf42a995891
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Yu-Chen Chen,1,2 Huiyou Chen,2 Fan Bo,2 Jin-Jing Xu,3 Yi Deng,3 Han Lv,4 Yuexin Cai,5 Wenqing Xia,6 Xindao Yin,2 Jian-Ping Gu,2 Guangming Lu1 1Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China; 2Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; 3Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; 4Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; 5Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; 6Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China Purpose: The default mode network (DMN) has been confirmed to be involved in chronic tinnitus perception. Tinnitus distress may be associated with abnormal functional connectivity (FC) within the DMN regions. The goal of this study was to determine whether tinnitus disrupted the FC patterns within the DMN as measured by using resting-state functional magnetic resonance imaging approach. Patients and methods: Resting-state functional magnetic resonance imaging scans were acquired from 40 chronic bilateral tinnitus patients and 41 healthy controls. Both were age, sex, and education well-matched with normal hearing. Two important DMN regions, the anterior cingulate cortex and posterior cingulate cortex, were chosen as seed regions to detect the FC patterns within the DMN and then determine whether these changes were linked to clinical measures of tinnitus such as tinnitus duration and tinnitus severity. Results: Compared with healthy controls, chronic tinnitus patients manifested significantly enhanced FC between the anterior cingulate cortex and left precuneus, which was correlated with the tinnitus duration (r=0.451, p=0.007). Moreover, enhanced FC between the posterior cingulate cortex and right medial prefrontal cortex in tinnitus patients was positively correlated with the tinnitus distress (r=0.411, p=0.014). Conclusion: Chronic tinnitus patients showed disrupted FC patterns within the DMN regions which are correlated with tinnitus distress. Increased resting-state connectivity pattern of the DMN may play a pivotal role in neuropathological features underlying chronic tinnitus. Keywords: tinnitus, anterior cingulate cortex, posterior cingulate cortex, default mode network, resting-state fMRI