Real-time prediction of COVID-19 related mortality using electronic health records

Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.

Guardado en:
Detalles Bibliográficos
Autores principales: Patrick Schwab, Arash Mehrjou, Sonali Parbhoo, Leo Anthony Celi, Jürgen Hetzel, Markus Hofer, Bernhard Schölkopf, Stefan Bauer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1d4642baba4a44f0810c6f3b7cb930f9
record_format dspace
spelling oai:doaj.org-article:1d4642baba4a44f0810c6f3b7cb930f92021-12-02T14:21:20ZReal-time prediction of COVID-19 related mortality using electronic health records10.1038/s41467-020-20816-72041-1723https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f92021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20816-7https://doaj.org/toc/2041-1723Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.Patrick SchwabArash MehrjouSonali ParbhooLeo Anthony CeliJürgen HetzelMarkus HoferBernhard SchölkopfStefan BauerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Patrick Schwab
Arash Mehrjou
Sonali Parbhoo
Leo Anthony Celi
Jürgen Hetzel
Markus Hofer
Bernhard Schölkopf
Stefan Bauer
Real-time prediction of COVID-19 related mortality using electronic health records
description Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.
format article
author Patrick Schwab
Arash Mehrjou
Sonali Parbhoo
Leo Anthony Celi
Jürgen Hetzel
Markus Hofer
Bernhard Schölkopf
Stefan Bauer
author_facet Patrick Schwab
Arash Mehrjou
Sonali Parbhoo
Leo Anthony Celi
Jürgen Hetzel
Markus Hofer
Bernhard Schölkopf
Stefan Bauer
author_sort Patrick Schwab
title Real-time prediction of COVID-19 related mortality using electronic health records
title_short Real-time prediction of COVID-19 related mortality using electronic health records
title_full Real-time prediction of COVID-19 related mortality using electronic health records
title_fullStr Real-time prediction of COVID-19 related mortality using electronic health records
title_full_unstemmed Real-time prediction of COVID-19 related mortality using electronic health records
title_sort real-time prediction of covid-19 related mortality using electronic health records
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f9
work_keys_str_mv AT patrickschwab realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT arashmehrjou realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT sonaliparbhoo realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT leoanthonyceli realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT jurgenhetzel realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT markushofer realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT bernhardscholkopf realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
AT stefanbauer realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords
_version_ 1718391534816067584