Real-time prediction of COVID-19 related mortality using electronic health records
Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1d4642baba4a44f0810c6f3b7cb930f9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1d4642baba4a44f0810c6f3b7cb930f92021-12-02T14:21:20ZReal-time prediction of COVID-19 related mortality using electronic health records10.1038/s41467-020-20816-72041-1723https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f92021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20816-7https://doaj.org/toc/2041-1723Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.Patrick SchwabArash MehrjouSonali ParbhooLeo Anthony CeliJürgen HetzelMarkus HoferBernhard SchölkopfStefan BauerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Patrick Schwab Arash Mehrjou Sonali Parbhoo Leo Anthony Celi Jürgen Hetzel Markus Hofer Bernhard Schölkopf Stefan Bauer Real-time prediction of COVID-19 related mortality using electronic health records |
description |
Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries. |
format |
article |
author |
Patrick Schwab Arash Mehrjou Sonali Parbhoo Leo Anthony Celi Jürgen Hetzel Markus Hofer Bernhard Schölkopf Stefan Bauer |
author_facet |
Patrick Schwab Arash Mehrjou Sonali Parbhoo Leo Anthony Celi Jürgen Hetzel Markus Hofer Bernhard Schölkopf Stefan Bauer |
author_sort |
Patrick Schwab |
title |
Real-time prediction of COVID-19 related mortality using electronic health records |
title_short |
Real-time prediction of COVID-19 related mortality using electronic health records |
title_full |
Real-time prediction of COVID-19 related mortality using electronic health records |
title_fullStr |
Real-time prediction of COVID-19 related mortality using electronic health records |
title_full_unstemmed |
Real-time prediction of COVID-19 related mortality using electronic health records |
title_sort |
real-time prediction of covid-19 related mortality using electronic health records |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f9 |
work_keys_str_mv |
AT patrickschwab realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT arashmehrjou realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT sonaliparbhoo realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT leoanthonyceli realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT jurgenhetzel realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT markushofer realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT bernhardscholkopf realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords AT stefanbauer realtimepredictionofcovid19relatedmortalityusingelectronichealthrecords |
_version_ |
1718391534816067584 |