Real-time prediction of COVID-19 related mortality using electronic health records
Identifying COVID-19 patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, the authors present a clinical risk scoring system trained on a large data set of patients from 69 healthcare institutions in multiple countries.
Guardado en:
Autores principales: | Patrick Schwab, Arash Mehrjou, Sonali Parbhoo, Leo Anthony Celi, Jürgen Hetzel, Markus Hofer, Bernhard Schölkopf, Stefan Bauer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d4642baba4a44f0810c6f3b7cb930f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation
por: August DuMont Schütte, et al.
Publicado: (2021) -
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021) -
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning.
por: Aixia Guo, et al.
Publicado: (2021) -
Electronic health records
por: González Bernaldo de Quirós, Fernán, et al.
Publicado: (2016)