Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.

Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M Mar González-Barroso, Irina Giurgea, Fredéric Bouillaud, Andrea Anedda, Christine Bellanné-Chantelot, Laurence Hubert, Yves de Keyzer, Pascale de Lonlay, Daniel Ricquier
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2008
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1d46ac5c1e6e4f8aa527d7b2e5f7cdd6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1d46ac5c1e6e4f8aa527d7b2e5f7cdd6
record_format dspace
spelling oai:doaj.org-article:1d46ac5c1e6e4f8aa527d7b2e5f7cdd62021-11-25T06:18:15ZMutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.1932-620310.1371/journal.pone.0003850https://doaj.org/article/1d46ac5c1e6e4f8aa527d7b2e5f7cdd62008-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19065272/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involvement of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.M Mar González-BarrosoIrina GiurgeaFredéric BouillaudAndrea AneddaChristine Bellanné-ChantelotLaurence HubertYves de KeyzerPascale de LonlayDaniel RicquierPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 3, Iss 12, p e3850 (2008)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M Mar González-Barroso
Irina Giurgea
Fredéric Bouillaud
Andrea Anedda
Christine Bellanné-Chantelot
Laurence Hubert
Yves de Keyzer
Pascale de Lonlay
Daniel Ricquier
Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
description Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involvement of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.
format article
author M Mar González-Barroso
Irina Giurgea
Fredéric Bouillaud
Andrea Anedda
Christine Bellanné-Chantelot
Laurence Hubert
Yves de Keyzer
Pascale de Lonlay
Daniel Ricquier
author_facet M Mar González-Barroso
Irina Giurgea
Fredéric Bouillaud
Andrea Anedda
Christine Bellanné-Chantelot
Laurence Hubert
Yves de Keyzer
Pascale de Lonlay
Daniel Ricquier
author_sort M Mar González-Barroso
title Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
title_short Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
title_full Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
title_fullStr Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
title_full_unstemmed Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
title_sort mutations in ucp2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion.
publisher Public Library of Science (PLoS)
publishDate 2008
url https://doaj.org/article/1d46ac5c1e6e4f8aa527d7b2e5f7cdd6
work_keys_str_mv AT mmargonzalezbarroso mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT irinagiurgea mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT fredericbouillaud mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT andreaanedda mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT christinebellannechantelot mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT laurencehubert mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT yvesdekeyzer mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT pascaledelonlay mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
AT danielricquier mutationsinucp2incongenitalhyperinsulinismrevealaroleforregulationofinsulinsecretion
_version_ 1718413910253502464