Response and Surveillance System for Diarrhoea Based on a Patient Symptoms Using Machine Learning: A Study on Eswatini
Utilizing supervised machine learning algorithms to develop a surveillance and response system based on symptoms of diarrhoea, contingent on the Support Vector Machine (SVM) to predict the probable disease using labelled data. Diarrhoea is amongst the top ten diseases which kill. A prototype system...
Guardado en:
Autores principales: | Sibongakonke Kwanele Zungu, Qi-Xian Huang, Min-Yi Chiu, Hung-Min Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d64f687002545eb9eb015da74a8a6e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust Ensemble Machine Learning Model for Filtering Phishing URLs: Expandable Random Gradient Stacked Voting Classifier (ERG-SVC)
por: Pubudu L. Indrasiri, et al.
Publicado: (2021) -
Predicting the Risk of Alcohol Use Disorder Using Machine Learning: A Systematic Literature Review
por: Ali Ebrahimi, et al.
Publicado: (2021) -
Non-antibiotic possibilities in prevention and treatment of calf diarrhoea
por: Smulski Sebastian, et al.
Publicado: (2020) -
Short Text Classification Using Contextual Analysis
por: Sami Al Sulaimani, et al.
Publicado: (2021) -
Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification
por: Ireneusz Czarnowski, et al.
Publicado: (2021)