Thermal Energy Storage Materials (TESMs)—What Does It Take to Make Them Fly?

Thermal Energy Storage Materials (TESMs) may be the missing link to the “carbon neutral future” of our dreams. TESMs already cater to many renewable heating, cooling and thermal management applications. However, many challenges remain in finding optimal TESMs for specific requirements. Here, we comb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saman Nimali Gunasekara, Camila Barreneche, A. Inés Fernández, Alejandro Calderón, Rebecca Ravotti, Alenka Ristić, Peter Weinberger, Halime Ömur Paksoy, Burcu Koçak, Christoph Rathgeber, Justin Ningwei Chiu, Anastasia Stamatiou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1d6f21a6fdfe40a2a9751e3a3d34d181
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Thermal Energy Storage Materials (TESMs) may be the missing link to the “carbon neutral future” of our dreams. TESMs already cater to many renewable heating, cooling and thermal management applications. However, many challenges remain in finding optimal TESMs for specific requirements. Here, we combine literature, a bibliometric analysis and our experiences to elaborate on the true potential of TESMs. This starts with the evolution, fundamentals, and categorization of TESMs: phase change materials (PCMs), thermochemical heat storage materials (TCMs) and sensible thermal energy storage materials (STESMs). PCMs are the most researched, followed by STESMs and TCMs. China, the European Union (EU), the USA, India and the UK lead TESM publications globally, with Spain, France, Germany, Italy and Sweden leading in the EU. Dissemination and communication gaps on TESMs appear to hinder their deployment. Salt hydrates, alkanes, fatty acids, polyols, and esters lead amongst PCMs. Salt hydrates, hydroxides, hydrides, carbonates, ammines and composites dominate TCMs. Besides water, ceramics, rocks and molten salts lead as STESMs for large-scale applications. We discuss TESMs’ trends, gaps and barriers for commercialization, plus missing links from laboratory-to-applications. In conclusion, we present research paths and tasks to make these remarkable materials fly on the market by unveiling their potential to realize a carbon neutral future.