Deep Learning Approaches to Colorectal Cancer Diagnosis: A Review
Unprecedented breakthroughs in the development of graphical processing systems have led to great potential for deep learning (DL) algorithms in analyzing visual anatomy from high-resolution medical images. Recently, in digital pathology, the use of DL technologies has drawn a substantial amount of a...
Guardado en:
Autores principales: | Lakpa Dorje Tamang, Byung Wook Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d721a870bd540c0af185f4d4b606f2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network
por: Xinyu Hao, et al.
Publicado: (2021) -
Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images
por: YAN Rui, et al.
Publicado: (2021) -
Review on Deep Learning Methods for Chest X-Ray based Abnormality Detection and Thoracic Pathology Classification
por: Joana Rocha, et al.
Publicado: (2021) -
Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification
por: Sundar Santhoshkumar, et al.
Publicado: (2021) -
Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems
por: Tran Khanh Dang, et al.
Publicado: (2021)