A Novel Hybrid Method for KPI Anomaly Detection Based on VAE and SVDD
Key performance indicator (KPI) anomaly detection is the underlying core technology in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network structure composed of enco...
Guardado en:
Autores principales: | Yun Zhao, Xiuguo Zhang, Zijing Shang, Zhiying Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d74e5d79e2f4370b034f2cec1600548 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Imene Mitiche, et al.
Publicado: (2021) -
Creative University: A Definition and Activities Management Based on the Completion of Key Performance Indicator (KPI)
por: Sutanto,Sutanto, et al.
Publicado: (2021) -
Automated Damage Detection of (C/C)/Si/SiC Composite Using Vibration Modes with Deep Neural Networks
por: Chihiro Shibata, et al.
Publicado: (2021) -
Creative University: A Definition and Activities Management Based on the Completion of Key Performance Indicator (KPI)
por: Sutanto Sutanto, et al.
Publicado: (2021) -
FaceVAE: Generation of a 3D Geometric Object Using Variational Autoencoders
por: Sungsoo Park, et al.
Publicado: (2021)