Composite Scaffolds from Gelatin and Bone Meal Powder for Tissue Engineering

Bone tissue engineering offers versatile solutions to broaden clinical options for treating skeletal injuries. However, the variety of robust bone implants and substitutes remains largely uninvestigated. The advancements in hydrogel scaffolds composed of natural polymeric materials and osteoinductiv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Darlin Lantigua, Xinchen Wu, Sanika Suvarnapathaki, Michelle A. Nguyen, Gulden Camci-Unal
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/1d9256b6e6c445cdbc0603bc93324d29
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Bone tissue engineering offers versatile solutions to broaden clinical options for treating skeletal injuries. However, the variety of robust bone implants and substitutes remains largely uninvestigated. The advancements in hydrogel scaffolds composed of natural polymeric materials and osteoinductive microparticles have shown to be promising solutions in this field. In this study, gelatin methacrylate (GelMA) hydrogels containing bone meal powder (BP) particles were investigated for their osteoinductive capacity. As natural source of the bone mineral, we expect that BP improves the scaffold’s ability to induce mineralization. We characterized the physical properties of GelMA hydrogels containing various BP concentrations (0, 0.5, 5, and 50 mg/mL). The in vitro cellular studies revealed enhanced mechanical performance and the potential to promote the differentiation of pre-osteoblast cells. The in vivo studies demonstrated both promising biocompatibility and biodegradation properties. Overall, the biological and physical properties of this biomaterial is tunable based on BP concentration in GelMA scaffolds. The findings of this study offer a new composite scaffold for bone tissue engineering.