New understanding of electrical activity brought by surface potential of cardiomyocytes

Abstract Aiming at the problem encountered in the previous research: during the electrical activity of cardiomyocytes, the influent ions do not seem to be directly derived from the extracellular fluid. We chose to cut in from the colloidal properties of the cells, follow the basic principles of phys...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ying Zhou, Yanfei Hao, Pei Sun, Guang Li, Mengqi Dong, Xuehui Fan, Xiuyun He
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1d942985b3094f30ae3087a88e967b52
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1d942985b3094f30ae3087a88e967b52
record_format dspace
spelling oai:doaj.org-article:1d942985b3094f30ae3087a88e967b522021-12-02T16:36:12ZNew understanding of electrical activity brought by surface potential of cardiomyocytes10.1038/s41598-021-86138-w2045-2322https://doaj.org/article/1d942985b3094f30ae3087a88e967b522021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86138-whttps://doaj.org/toc/2045-2322Abstract Aiming at the problem encountered in the previous research: during the electrical activity of cardiomyocytes, the influent ions do not seem to be directly derived from the extracellular fluid. We chose to cut in from the colloidal properties of the cells, follow the basic principles of physical chemistry, and establish hypotheses along the derivation of the structural characteristics of cardiomyocytes. Through the surface ion adsorption experiment and patch clamp experiment of living cells, under the condition of sequentially reducing the concentration of Na+ in the extracellular fluid, we observed the exchange and diffusion of adsorbed ions on the cell surface; the changes of inflow I Na, I Ca-L and action potential; and correlation between results. The results showed that the hypothesis is true. The observed parameter changes were consistent with the fact that during depolarization of cardiomyocytes, the ions of influx were derived from the inference of adsorbed ions on the cell surface; at the same time, it also provided an objective and realistic explanation for the generation of electrocardiogram.Ying ZhouYanfei HaoPei SunGuang LiMengqi DongXuehui FanXiuyun HeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ying Zhou
Yanfei Hao
Pei Sun
Guang Li
Mengqi Dong
Xuehui Fan
Xiuyun He
New understanding of electrical activity brought by surface potential of cardiomyocytes
description Abstract Aiming at the problem encountered in the previous research: during the electrical activity of cardiomyocytes, the influent ions do not seem to be directly derived from the extracellular fluid. We chose to cut in from the colloidal properties of the cells, follow the basic principles of physical chemistry, and establish hypotheses along the derivation of the structural characteristics of cardiomyocytes. Through the surface ion adsorption experiment and patch clamp experiment of living cells, under the condition of sequentially reducing the concentration of Na+ in the extracellular fluid, we observed the exchange and diffusion of adsorbed ions on the cell surface; the changes of inflow I Na, I Ca-L and action potential; and correlation between results. The results showed that the hypothesis is true. The observed parameter changes were consistent with the fact that during depolarization of cardiomyocytes, the ions of influx were derived from the inference of adsorbed ions on the cell surface; at the same time, it also provided an objective and realistic explanation for the generation of electrocardiogram.
format article
author Ying Zhou
Yanfei Hao
Pei Sun
Guang Li
Mengqi Dong
Xuehui Fan
Xiuyun He
author_facet Ying Zhou
Yanfei Hao
Pei Sun
Guang Li
Mengqi Dong
Xuehui Fan
Xiuyun He
author_sort Ying Zhou
title New understanding of electrical activity brought by surface potential of cardiomyocytes
title_short New understanding of electrical activity brought by surface potential of cardiomyocytes
title_full New understanding of electrical activity brought by surface potential of cardiomyocytes
title_fullStr New understanding of electrical activity brought by surface potential of cardiomyocytes
title_full_unstemmed New understanding of electrical activity brought by surface potential of cardiomyocytes
title_sort new understanding of electrical activity brought by surface potential of cardiomyocytes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1d942985b3094f30ae3087a88e967b52
work_keys_str_mv AT yingzhou newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT yanfeihao newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT peisun newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT guangli newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT mengqidong newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT xuehuifan newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
AT xiuyunhe newunderstandingofelectricalactivitybroughtbysurfacepotentialofcardiomyocytes
_version_ 1718383618825388032