Using multiple machine learning algorithms to classify elite and sub-elite goalkeepers in professional men’s football
Abstract This study applied multiple machine learning algorithms to classify the performance levels of professional goalkeepers (GK). Technical performances of GK’s competing in the elite divisions of England, Spain, Germany, and France were analysed in order to determine which factors distinguish e...
Guardado en:
Autores principales: | Mikael Jamil, Ashwin Phatak, Saumya Mehta, Marco Beato, Daniel Memmert, Mark Connor |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1d978cc071454fdbbfc4a042eb5e62b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a Machine-Learning-Based Classifier for the Identification of Head and Body Impacts in Elite Level Australian Rules Football Players
por: Peter Goodin, et al.
Publicado: (2021) -
Understanding gender differences in professional European football through machine learning interpretability and match actions data
por: Marc Garnica-Caparrós, et al.
Publicado: (2021) -
A longitudinal cohort study of adolescent elite footballers and controls investigating the development of cam morphology
por: Scott Fernquest, et al.
Publicado: (2021) -
Screening to Detect Hip and Groin Problems in Elite Adolescent Football (Soccer) Players – Friend or Foe?
por: Matthew D DeLang, et al.
Publicado: (2021) -
Desire, need and reality: Education and professionalization of elite groups in Brazil
por: Thais Joi Martins, et al.
Publicado: (2018)