Infection effects of the new microsporidian species Tubulinosema suzukii on its host Drosophila suzukii

Abstract Microsporidian infections of insects are important natural constraints of population growth, often reducing lifespan, fecundity and fertility of the infected host. The recently discovered Tubulinosema suzukii infects Drosophila suzukii (spotted wing drosophila, SWD), an invasive pest of man...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sarah Biganski, Sabrina Fückel, Johannes A. Jehle, Regina G. Kleespies
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1d98e3d9a98d4e96b395aaf23f351c9c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Microsporidian infections of insects are important natural constraints of population growth, often reducing lifespan, fecundity and fertility of the infected host. The recently discovered Tubulinosema suzukii infects Drosophila suzukii (spotted wing drosophila, SWD), an invasive pest of many fruit crops in North America and Europe. In laboratory tests, fitness effects on larval and adult stages were explored. High level infection after larval treatment caused up to 70% pupal mortality, a decreased lifespan and a 70% reduced oviposition of emerging adults in biparental infection clusters. A shift to higher proportion of female offspring compared to controls suggested a potential parthenogenetic effect after microsporidian infection. A clear sex-linkage of effects was noted; females were specifically impaired, as concluded from fecundity tests with only infected female parents. Additive effects were noted when both parental sexes were infected, whereas least effects were found with only infected male parents, though survival of males was most negatively affected if they were fed with T. suzukii spores in the adult stage. Although most negative effects on fitness parameters were revealed after larval treatment, infection of offspring was never higher than 4%, suggesting limited vertical transmission. For that reason, a self-reliant spread in natural SWD populations would probably only occur by spore release from cadavers or frass.