Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy
Infectious diseases have been one of the major causes of human mortality, and mathematical models have been playing significant roles in understanding the spread mechanism and controlling contagious diseases. In this paper, we propose a delayed SEIR epidemic model with intervention strategies and re...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1dbae7def7484dfeaa784dd86ddbe4f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Infectious diseases have been one of the major causes of human mortality, and mathematical models have been playing significant roles in understanding the spread mechanism and controlling contagious diseases. In this paper, we propose a delayed SEIR epidemic model with intervention strategies and recovery under the low availability of resources. Non-delayed and delayed models both possess two equilibria: the disease-free equilibrium and the endemic equilibrium. When the basic reproduction number R0=1, the non-delayed system undergoes a transcritical bifurcation. For the delayed system, we incorporate two important time delays: τ1 represents the latent period of the intervention strategies, and τ2 represents the period for curing the infected individuals. Time delays change the system dynamics via Hopf-bifurcation and oscillations. The direction and stability of delay induced Hopf-bifurcation are established using normal form theory and center manifold theorem. Furthermore, we rigorously prove that local Hopf bifurcation implies global Hopf bifurcation. Stability switching curves and crossing directions are analyzed on the two delay parameter plane, which allows both delays varying simultaneously. Numerical results demonstrate that by increasing the intervention strength, the infection level decays; by increasing the limitation of treatment, the infection level increases. Our quantitative observations can be useful for exploring the relative importance of intervention and medical resources. As a timing application, we parameterize the model for COVID-19 in Spain and Italy. With strict intervention policies, the infection numbers would have been greatly reduced in the early phase of COVID-19 in Spain and Italy. We also show that reducing the time delays in intervention and recovery would have decreased the total number of cases in the early phase of COVID-19 in Spain and Italy. Our work highlights the necessity to consider the time delays in intervention and recovery in an epidemic model. |
---|