Machine learning and evolutionary prediction of superhard B-C-N compounds
Abstract We build random forests models to predict elastic properties and mechanical hardness of a compound, using only its chemical formula as input. The model training uses over 10,000 target compounds and 60 features based on stoichiometric attributes, elemental properties, orbital occupations, a...
Guardado en:
Autores principales: | Wei-Chih Chen, Joanna N. Schmidt, Da Yan, Yogesh K. Vohra, Cheng-Chien Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1dbbbb5676ce42ad84ccbf4a5d072afb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evolutionary computing and machine learning for discovering of low-energy defect configurations
por: Marco Arrigoni, et al.
Publicado: (2021) -
Predicting stable crystalline compounds using chemical similarity
por: Hai-Chen Wang, et al.
Publicado: (2021) -
Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
por: Bharat Medasani, et al.
Publicado: (2016) -
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
por: Namid R. Stillman, et al.
Publicado: (2021) -
Decoding defect statistics from diffractograms via machine learning
por: Cody Kunka, et al.
Publicado: (2021)