Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography

<i>Background</i>: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) ann...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jasjit S. Suri, Sushant Agarwal, Pranav Elavarthi, Rajesh Pathak, Vedmanvitha Ketireddy, Marta Columbu, Luca Saba, Suneet K. Gupta, Gavino Faa, Inder M. Singh, Monika Turk, Paramjit S. Chadha, Amer M. Johri, Narendra N. Khanna, Klaudija Viskovic, Sophie Mavrogeni, John R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Jagjit S. Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Andrew Nicolaides, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Pudukode R. Krishnan, Nagy Ferenc, Zoltan Ruzsa, Archna Gupta, Subbaram Naidu, Mannudeep K. Kalra
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1dc2ceaec98142dea5fc58b63dc51b62
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1dc2ceaec98142dea5fc58b63dc51b62
record_format dspace
spelling oai:doaj.org-article:1dc2ceaec98142dea5fc58b63dc51b622021-11-25T17:20:53ZInter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography10.3390/diagnostics111120252075-4418https://doaj.org/article/1dc2ceaec98142dea5fc58b63dc51b622021-11-01T00:00:00Zhttps://www.mdpi.com/2075-4418/11/11/2025https://doaj.org/toc/2075-4418<i>Background</i>: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. <i>Methodology</i>: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. <i>Results</i>: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. <i>Conclusions</i>: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.Jasjit S. SuriSushant AgarwalPranav ElavarthiRajesh PathakVedmanvitha KetireddyMarta ColumbuLuca SabaSuneet K. GuptaGavino FaaInder M. SinghMonika TurkParamjit S. ChadhaAmer M. JohriNarendra N. KhannaKlaudija ViskovicSophie MavrogeniJohn R. LairdGyan PareekMartin MinerDavid W. SobelAntonella BalestrieriPetros P. SfikakisGeorge TsoulfasAthanasios ProtogerouDurga Prasanna MisraVikas AgarwalGeorge D. KitasJagjit S. TejiMustafa Al-MainiSurinder K. DhanjilAndrew NicolaidesAditya SharmaVijay RathoreMostafa FatemiAzra AlizadPudukode R. KrishnanNagy FerencZoltan RuzsaArchna GuptaSubbaram NaiduMannudeep K. KalraMDPI AGarticleCOVID-19computed tomographylungsvariabilitysegmentationhybrid deep learningMedicine (General)R5-920ENDiagnostics, Vol 11, Iss 2025, p 2025 (2021)
institution DOAJ
collection DOAJ
language EN
topic COVID-19
computed tomography
lungs
variability
segmentation
hybrid deep learning
Medicine (General)
R5-920
spellingShingle COVID-19
computed tomography
lungs
variability
segmentation
hybrid deep learning
Medicine (General)
R5-920
Jasjit S. Suri
Sushant Agarwal
Pranav Elavarthi
Rajesh Pathak
Vedmanvitha Ketireddy
Marta Columbu
Luca Saba
Suneet K. Gupta
Gavino Faa
Inder M. Singh
Monika Turk
Paramjit S. Chadha
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Jagjit S. Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Andrew Nicolaides
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Pudukode R. Krishnan
Nagy Ferenc
Zoltan Ruzsa
Archna Gupta
Subbaram Naidu
Mannudeep K. Kalra
Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
description <i>Background</i>: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. <i>Methodology</i>: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. <i>Results</i>: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. <i>Conclusions</i>: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.
format article
author Jasjit S. Suri
Sushant Agarwal
Pranav Elavarthi
Rajesh Pathak
Vedmanvitha Ketireddy
Marta Columbu
Luca Saba
Suneet K. Gupta
Gavino Faa
Inder M. Singh
Monika Turk
Paramjit S. Chadha
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Jagjit S. Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Andrew Nicolaides
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Pudukode R. Krishnan
Nagy Ferenc
Zoltan Ruzsa
Archna Gupta
Subbaram Naidu
Mannudeep K. Kalra
author_facet Jasjit S. Suri
Sushant Agarwal
Pranav Elavarthi
Rajesh Pathak
Vedmanvitha Ketireddy
Marta Columbu
Luca Saba
Suneet K. Gupta
Gavino Faa
Inder M. Singh
Monika Turk
Paramjit S. Chadha
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Jagjit S. Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Andrew Nicolaides
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Pudukode R. Krishnan
Nagy Ferenc
Zoltan Ruzsa
Archna Gupta
Subbaram Naidu
Mannudeep K. Kalra
author_sort Jasjit S. Suri
title Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
title_short Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
title_full Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
title_fullStr Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
title_full_unstemmed Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography
title_sort inter-variability study of covlias 1.0: hybrid deep learning models for covid-19 lung segmentation in computed tomography
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1dc2ceaec98142dea5fc58b63dc51b62
work_keys_str_mv AT jasjitssuri intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT sushantagarwal intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT pranavelavarthi intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT rajeshpathak intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT vedmanvithaketireddy intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT martacolumbu intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT lucasaba intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT suneetkgupta intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT gavinofaa intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT indermsingh intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT monikaturk intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT paramjitschadha intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT amermjohri intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT narendrankhanna intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT klaudijaviskovic intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT sophiemavrogeni intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT johnrlaird intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT gyanpareek intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT martinminer intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT davidwsobel intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT antonellabalestrieri intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT petrospsfikakis intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT georgetsoulfas intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT athanasiosprotogerou intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT durgaprasannamisra intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT vikasagarwal intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT georgedkitas intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT jagjitsteji intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT mustafaalmaini intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT surinderkdhanjil intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT andrewnicolaides intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT adityasharma intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT vijayrathore intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT mostafafatemi intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT azraalizad intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT pudukoderkrishnan intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT nagyferenc intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT zoltanruzsa intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT archnagupta intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT subbaramnaidu intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
AT mannudeepkkalra intervariabilitystudyofcovlias10hybriddeeplearningmodelsforcovid19lungsegmentationincomputedtomography
_version_ 1718412455464402944