Traveling wave solutions of Benny Luke equation via the enhanced (G'/G)-expansion method
In this article, we execute the enhanced (G'/G)-expansion method to search for new and further general closed-form wave solutions to the nonlinear partial differential equation, namely the Benny Luke equation. This method is one of the powerful techniques that come into view in recent time for...
Guardado en:
Autores principales: | A.K.M. Kazi Sazzad Hossain, M. Ali Akbar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1dc342224bb54df8b7331f1c109baa0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Soliton Solutions for the Higher-Dimensional Non-Local Ito Equation
por: Inc Mustafa, et al.
Publicado: (2021) -
Quasi-stability and continuity of attractors for nonlinear system of wave equations
por: Freitas M. M., et al.
Publicado: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Banhatti, revan and hyper-indices of silicon carbide Si2C3-III[n,m]
por: Zhao Dongming, et al.
Publicado: (2021) -
On non-resistive limit of 1D MHD equations with no vacuum at infinity
por: Li Zilai, et al.
Publicado: (2021)