Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal tec...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b325 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1dd37e80ffb447ca9a7dfd8e7970b325 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1dd37e80ffb447ca9a7dfd8e7970b3252021-12-02T16:04:35ZFunctional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex10.1038/s41598-021-91972-z2045-2322https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b3252021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91972-zhttps://doaj.org/toc/2045-2322Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal technique for this aim is fUS imaging, which allows one to generate brain-wide activation maps with submesoscopic spatial resolution. However, optical stimulation of the brain with blue light might lead to non-specific activations at high irradiances. fUS imaging of optogenetic activations can be obtained at these wavelengths using lower light power (< 2mW) but it limits the depth of directly activatable neurons from the cortical surface. Our main goal was to report that we can detect specific optogenetic activations in V1 even in deep layers following stimulation at the cortical surface. Here, we show the possibility to detect deep optogenetic activations in anesthetized rats expressing the red-shifted opsin ChrimsonR in V1 using fUS imaging. We demonstrate the optogenetic specificity of these activations and their neuronal origin with electrophysiological recordings. Finally, we show that the optogenetic response initiated in V1 spreads to downstream (LGN) and upstream (V2) visual areas.M. ProvansalG. LabernèdeC. JoffroisA. RizkallahR. GouletM. ValetW. DeschampsU. FerrariA. ChaffiolD. DalkaraJ. A. SahelM. TanterS. PicaudG. GauvainF. ArcizetNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Provansal G. Labernède C. Joffrois A. Rizkallah R. Goulet M. Valet W. Deschamps U. Ferrari A. Chaffiol D. Dalkara J. A. Sahel M. Tanter S. Picaud G. Gauvain F. Arcizet Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
description |
Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal technique for this aim is fUS imaging, which allows one to generate brain-wide activation maps with submesoscopic spatial resolution. However, optical stimulation of the brain with blue light might lead to non-specific activations at high irradiances. fUS imaging of optogenetic activations can be obtained at these wavelengths using lower light power (< 2mW) but it limits the depth of directly activatable neurons from the cortical surface. Our main goal was to report that we can detect specific optogenetic activations in V1 even in deep layers following stimulation at the cortical surface. Here, we show the possibility to detect deep optogenetic activations in anesthetized rats expressing the red-shifted opsin ChrimsonR in V1 using fUS imaging. We demonstrate the optogenetic specificity of these activations and their neuronal origin with electrophysiological recordings. Finally, we show that the optogenetic response initiated in V1 spreads to downstream (LGN) and upstream (V2) visual areas. |
format |
article |
author |
M. Provansal G. Labernède C. Joffrois A. Rizkallah R. Goulet M. Valet W. Deschamps U. Ferrari A. Chaffiol D. Dalkara J. A. Sahel M. Tanter S. Picaud G. Gauvain F. Arcizet |
author_facet |
M. Provansal G. Labernède C. Joffrois A. Rizkallah R. Goulet M. Valet W. Deschamps U. Ferrari A. Chaffiol D. Dalkara J. A. Sahel M. Tanter S. Picaud G. Gauvain F. Arcizet |
author_sort |
M. Provansal |
title |
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
title_short |
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
title_full |
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
title_fullStr |
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
title_full_unstemmed |
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
title_sort |
functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b325 |
work_keys_str_mv |
AT mprovansal functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT glabernede functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT cjoffrois functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT arizkallah functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT rgoulet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT mvalet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT wdeschamps functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT uferrari functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT achaffiol functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT ddalkara functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT jasahel functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT mtanter functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT spicaud functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT ggauvain functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex AT farcizet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex |
_version_ |
1718385194786881536 |