Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex

Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal tec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Provansal, G. Labernède, C. Joffrois, A. Rizkallah, R. Goulet, M. Valet, W. Deschamps, U. Ferrari, A. Chaffiol, D. Dalkara, J. A. Sahel, M. Tanter, S. Picaud, G. Gauvain, F. Arcizet
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b325
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1dd37e80ffb447ca9a7dfd8e7970b325
record_format dspace
spelling oai:doaj.org-article:1dd37e80ffb447ca9a7dfd8e7970b3252021-12-02T16:04:35ZFunctional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex10.1038/s41598-021-91972-z2045-2322https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b3252021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91972-zhttps://doaj.org/toc/2045-2322Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal technique for this aim is fUS imaging, which allows one to generate brain-wide activation maps with submesoscopic spatial resolution. However, optical stimulation of the brain with blue light might lead to non-specific activations at high irradiances. fUS imaging of optogenetic activations can be obtained at these wavelengths using lower light power (< 2mW) but it limits the depth of directly activatable neurons from the cortical surface. Our main goal was to report that we can detect specific optogenetic activations in V1 even in deep layers following stimulation at the cortical surface. Here, we show the possibility to detect deep optogenetic activations in anesthetized rats expressing the red-shifted opsin ChrimsonR in V1 using fUS imaging. We demonstrate the optogenetic specificity of these activations and their neuronal origin with electrophysiological recordings. Finally, we show that the optogenetic response initiated in V1 spreads to downstream (LGN) and upstream (V2) visual areas.M. ProvansalG. LabernèdeC. JoffroisA. RizkallahR. GouletM. ValetW. DeschampsU. FerrariA. ChaffiolD. DalkaraJ. A. SahelM. TanterS. PicaudG. GauvainF. ArcizetNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M. Provansal
G. Labernède
C. Joffrois
A. Rizkallah
R. Goulet
M. Valet
W. Deschamps
U. Ferrari
A. Chaffiol
D. Dalkara
J. A. Sahel
M. Tanter
S. Picaud
G. Gauvain
F. Arcizet
Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
description Abstract Optogenetics has revolutionized neurosciences by allowing fine control of neuronal activity. An important aspect for this control is assessing the activation and/or adjusting the stimulation, which requires imaging the entire volume of optogenetically-induced neuronal activity. An ideal technique for this aim is fUS imaging, which allows one to generate brain-wide activation maps with submesoscopic spatial resolution. However, optical stimulation of the brain with blue light might lead to non-specific activations at high irradiances. fUS imaging of optogenetic activations can be obtained at these wavelengths using lower light power (< 2mW) but it limits the depth of directly activatable neurons from the cortical surface. Our main goal was to report that we can detect specific optogenetic activations in V1 even in deep layers following stimulation at the cortical surface. Here, we show the possibility to detect deep optogenetic activations in anesthetized rats expressing the red-shifted opsin ChrimsonR in V1 using fUS imaging. We demonstrate the optogenetic specificity of these activations and their neuronal origin with electrophysiological recordings. Finally, we show that the optogenetic response initiated in V1 spreads to downstream (LGN) and upstream (V2) visual areas.
format article
author M. Provansal
G. Labernède
C. Joffrois
A. Rizkallah
R. Goulet
M. Valet
W. Deschamps
U. Ferrari
A. Chaffiol
D. Dalkara
J. A. Sahel
M. Tanter
S. Picaud
G. Gauvain
F. Arcizet
author_facet M. Provansal
G. Labernède
C. Joffrois
A. Rizkallah
R. Goulet
M. Valet
W. Deschamps
U. Ferrari
A. Chaffiol
D. Dalkara
J. A. Sahel
M. Tanter
S. Picaud
G. Gauvain
F. Arcizet
author_sort M. Provansal
title Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
title_short Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
title_full Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
title_fullStr Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
title_full_unstemmed Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
title_sort functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1dd37e80ffb447ca9a7dfd8e7970b325
work_keys_str_mv AT mprovansal functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT glabernede functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT cjoffrois functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT arizkallah functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT rgoulet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT mvalet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT wdeschamps functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT uferrari functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT achaffiol functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT ddalkara functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT jasahel functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT mtanter functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT spicaud functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT ggauvain functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
AT farcizet functionalultrasoundimagingofthespreadingactivityfollowingoptogeneticstimulationoftheratvisualcortex
_version_ 1718385194786881536