Identification of stress response proteins through fusion of machine learning models and statistical paradigms
Abstract Proteins are a vital component of cells that perform physiological functions to ensure smooth operations of bodily functions. Identification of a protein's function involves a detailed understanding of the structure of proteins. Stress proteins are essential mediators of several respon...
Guardado en:
Autores principales: | Ebraheem Alzahrani, Wajdi Alghamdi, Malik Zaka Ullah, Yaser Daanial Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1de75277602c4732bc46a4bb3a5045e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluating machine learning methodologies for identification of cancer driver genes
por: Sharaf J. Malebary, et al.
Publicado: (2021) -
Couple Stress Hybrid Nanofluid Flow through a Converging-Diverging Channel
por: Malik Zaka Ullah, et al.
Publicado: (2021) -
Darcy–Forchheimer couple stress hybrid nanofluids flow with variable fluid properties
por: Anwar Saeed, et al.
Publicado: (2021) -
Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach.
por: Christopher Ifeanyi Eke, et al.
Publicado: (2021) -
The Flow of Blood-Based Hybrid Nanofluids with Couple Stresses by the Convergent and Divergent Channel for the Applications of Drug Delivery
por: Anwar Saeed, et al.
Publicado: (2021)