A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations

Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting fa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yoshinori Fujimura, Chihiro Kawano, Ayaka Maeda-Murayama, Asako Nakamura, Akiko Koike-Miki, Daichi Yukihira, Eisuke Hayakawa, Takanori Ishii, Hirofumi Tachibana, Hiroyuki Wariishi, Daisuke Miura
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1df2176e02e6451f82180dd92065cfd9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1df2176e02e6451f82180dd92065cfd9
record_format dspace
spelling oai:doaj.org-article:1df2176e02e6451f82180dd92065cfd92021-12-02T16:06:43ZA Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations10.1038/s41598-017-02499-12045-2322https://doaj.org/article/1df2176e02e6451f82180dd92065cfd92017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02499-1https://doaj.org/toc/2045-2322Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI–MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.Yoshinori FujimuraChihiro KawanoAyaka Maeda-MurayamaAsako NakamuraAkiko Koike-MikiDaichi YukihiraEisuke HayakawaTakanori IshiiHirofumi TachibanaHiroyuki WariishiDaisuke MiuraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yoshinori Fujimura
Chihiro Kawano
Ayaka Maeda-Murayama
Asako Nakamura
Akiko Koike-Miki
Daichi Yukihira
Eisuke Hayakawa
Takanori Ishii
Hirofumi Tachibana
Hiroyuki Wariishi
Daisuke Miura
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
description Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI–MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.
format article
author Yoshinori Fujimura
Chihiro Kawano
Ayaka Maeda-Murayama
Asako Nakamura
Akiko Koike-Miki
Daichi Yukihira
Eisuke Hayakawa
Takanori Ishii
Hirofumi Tachibana
Hiroyuki Wariishi
Daisuke Miura
author_facet Yoshinori Fujimura
Chihiro Kawano
Ayaka Maeda-Murayama
Asako Nakamura
Akiko Koike-Miki
Daichi Yukihira
Eisuke Hayakawa
Takanori Ishii
Hirofumi Tachibana
Hiroyuki Wariishi
Daisuke Miura
author_sort Yoshinori Fujimura
title A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
title_short A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
title_full A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
title_fullStr A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
title_full_unstemmed A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
title_sort chemometrics-driven strategy for the bioactivity evaluation of complex multicomponent systems and the effective selection of bioactivity-predictive chemical combinations
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/1df2176e02e6451f82180dd92065cfd9
work_keys_str_mv AT yoshinorifujimura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT chihirokawano achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT ayakamaedamurayama achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT asakonakamura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT akikokoikemiki achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT daichiyukihira achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT eisukehayakawa achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT takanoriishii achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT hirofumitachibana achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT hiroyukiwariishi achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT daisukemiura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT yoshinorifujimura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT chihirokawano chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT ayakamaedamurayama chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT asakonakamura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT akikokoikemiki chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT daichiyukihira chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT eisukehayakawa chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT takanoriishii chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT hirofumitachibana chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT hiroyukiwariishi chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
AT daisukemiura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations
_version_ 1718384889151094784