A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations
Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting fa...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1df2176e02e6451f82180dd92065cfd9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1df2176e02e6451f82180dd92065cfd9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1df2176e02e6451f82180dd92065cfd92021-12-02T16:06:43ZA Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations10.1038/s41598-017-02499-12045-2322https://doaj.org/article/1df2176e02e6451f82180dd92065cfd92017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02499-1https://doaj.org/toc/2045-2322Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI–MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.Yoshinori FujimuraChihiro KawanoAyaka Maeda-MurayamaAsako NakamuraAkiko Koike-MikiDaichi YukihiraEisuke HayakawaTakanori IshiiHirofumi TachibanaHiroyuki WariishiDaisuke MiuraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yoshinori Fujimura Chihiro Kawano Ayaka Maeda-Murayama Asako Nakamura Akiko Koike-Miki Daichi Yukihira Eisuke Hayakawa Takanori Ishii Hirofumi Tachibana Hiroyuki Wariishi Daisuke Miura A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
description |
Abstract Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI–MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems. |
format |
article |
author |
Yoshinori Fujimura Chihiro Kawano Ayaka Maeda-Murayama Asako Nakamura Akiko Koike-Miki Daichi Yukihira Eisuke Hayakawa Takanori Ishii Hirofumi Tachibana Hiroyuki Wariishi Daisuke Miura |
author_facet |
Yoshinori Fujimura Chihiro Kawano Ayaka Maeda-Murayama Asako Nakamura Akiko Koike-Miki Daichi Yukihira Eisuke Hayakawa Takanori Ishii Hirofumi Tachibana Hiroyuki Wariishi Daisuke Miura |
author_sort |
Yoshinori Fujimura |
title |
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
title_short |
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
title_full |
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
title_fullStr |
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
title_full_unstemmed |
A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations |
title_sort |
chemometrics-driven strategy for the bioactivity evaluation of complex multicomponent systems and the effective selection of bioactivity-predictive chemical combinations |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/1df2176e02e6451f82180dd92065cfd9 |
work_keys_str_mv |
AT yoshinorifujimura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT chihirokawano achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT ayakamaedamurayama achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT asakonakamura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT akikokoikemiki achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT daichiyukihira achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT eisukehayakawa achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT takanoriishii achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT hirofumitachibana achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT hiroyukiwariishi achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT daisukemiura achemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT yoshinorifujimura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT chihirokawano chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT ayakamaedamurayama chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT asakonakamura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT akikokoikemiki chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT daichiyukihira chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT eisukehayakawa chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT takanoriishii chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT hirofumitachibana chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT hiroyukiwariishi chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations AT daisukemiura chemometricsdrivenstrategyforthebioactivityevaluationofcomplexmulticomponentsystemsandtheeffectiveselectionofbioactivitypredictivechemicalcombinations |
_version_ |
1718384889151094784 |