Flexible kernel memory.
This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors...
Guardado en:
Autores principales: | Dimitri Nowicki, Hava Siegelmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1df67ecceedb4f71842f5a9388e702b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamic computational model suggests that cellular citizenship is fundamental for selective tumor apoptosis.
por: Megan Olsen, et al.
Publicado: (2010) -
Unique scales preserve self-similar integrate-and-fire functionality of neuronal clusters
por: Anar Amgalan, et al.
Publicado: (2021) -
Brain-inspired replay for continual learning with artificial neural networks
por: Gido M. van de Ven, et al.
Publicado: (2020) -
Engineering Classical Capacity of Generalized Pauli Channels with Admissible Memory Kernels
por: Katarzyna Siudzińska, et al.
Publicado: (2021) -
Symmetry of learning rate in synaptic plasticity modulates formation of flexible and stable memories
por: Youngjin Park, et al.
Publicado: (2017)