A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.
Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetyla...
Guardado en:
Autores principales: | Lyudmila Y Kadyrova, Tony M Mertz, Yu Zhang, Matthew R Northam, Ziwei Sheng, Kirill S Lobachev, Polina V Shcherbakova, Farid A Kadyrov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e025a27b5d0423a8048951072262292 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε.
por: Anna Aksenova, et al.
Publicado: (2010) -
Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair
por: N. J. Haradhvala, et al.
Publicado: (2018) -
Transcription shapes genome-wide histone acetylation patterns
por: Benjamin J. E. Martin, et al.
Publicado: (2021) -
Investigation of the acetylation mechanism by GCN5 histone acetyltransferase.
por: Junfeng Jiang, et al.
Publicado: (2012) -
Acetyl-CoA flux regulates the proteome and acetyl-proteome to maintain intracellular metabolic crosstalk
por: Inca A. Dieterich, et al.
Publicado: (2019)