Inferring the molecular and phenotypic impact of amino acid variants with MutPred2

Identifying variants capable of causing genetic disease is challenging. The authors use semisupervised learning to predict pathogenic missense variants and their impacts on protein structure and function, enabling a molecular mechanism-driven approach to studying different types of human disease.

Guardado en:
Detalles Bibliográficos
Autores principales: Vikas Pejaver, Jorge Urresti, Jose Lugo-Martinez, Kymberleigh A. Pagel, Guan Ning Lin, Hyun-Jun Nam, Matthew Mort, David N. Cooper, Jonathan Sebat, Lilia M. Iakoucheva, Sean D. Mooney, Predrag Radivojac
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1e05d841d70843dea427e050f3dbb928
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Identifying variants capable of causing genetic disease is challenging. The authors use semisupervised learning to predict pathogenic missense variants and their impacts on protein structure and function, enabling a molecular mechanism-driven approach to studying different types of human disease.