PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
Point cloud classification plays a significant role in Light Detection and Ranging (LiDAR) applications. However, most available multi-scale feature learning networks for large-scale 3D LiDAR point cloud classification tasks are time-consuming. In this paper, an efficient deep neural architecture de...
Guardado en:
Autores principales: | Genping Zhao, Weiguang Zhang, Yeping Peng, Heng Wu, Zhuowei Wang, Lianglun Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e0a845ab8e6467bb45e5028053e439e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance of Mobile LiDAR in Real Road Driving Conditions
por: Jisoo Kim, et al.
Publicado: (2021) -
Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
por: Anh Vu Vo, et al.
Publicado: (2021) -
Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
por: Muhammad Ibrahim, et al.
Publicado: (2021) -
A Coarse-to-Fine Approach for Rock Bolt Detection From 3D Point Clouds
por: Sarp Saydam, et al.
Publicado: (2021) -
Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
por: HERNÁNDEZ,JAIME, et al.
Publicado: (2013)