QoE-Oriented Rate Adaptation for DASH With Enhanced Deep Q-Learning
With the popularity of handheld devices, the development of wireless communication technology and the proliferation of multimedia resources, mobile video has become the main business in LTE networks with explosive traffic demands. How to improve the quality of experience (QoE) of mobile video in the...
Guardado en:
Autores principales: | Jie Liu, Xiaoming Tao, Jianhua Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e2d1d8f516c4c01a67dafce896e8ed9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensuring the QoE-Related Fairness to Reduce the User Abandonment Ratio
por: Izabela Mazur, et al.
Publicado: (2021) -
Modelo para medir QoE en IPTV /
por: Cuéllar Q., Juan Carlos
Publicado: (2018) -
Adaptive Transceiver Architecture With QoS Provision for OCDMA Network Based on Logic Gates
por: Hassan Yousif Ahmed, et al.
Publicado: (2021) -
FAUST: Fast Per-Scene Encoding Using Entropy-Based Scene Detection and Machine Learning
por: Anatoliy Zabrovskiy, et al.
Publicado: (2021) -
A New Deep Q-Network Design for QoS Multicast Routing in Cognitive Radio MANETs
por: Thong-Nhat Tran, et al.
Publicado: (2021)