Direct writing of anodic oxides for plastic electronics

Flexible circuits: anodization makes them all! A simple concept of scanning head-guided anodization is shown to be highly expandable to fabricate various electronic components. A team led by Professor Siegfried Bauer from Johannes Kepler University Linz, Austria develops a universal and patternable...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian Michael Siket, Nadine Tillner, Andrei Ionut Mardare, Amir Reuveny, Carina Daniela Grill, Florian Hartmann, Gerald Kettlgruber, Richard Moser, Jan Philipp Kollender, Takao Someya, Achim Walter Hassel, Martin Kaltenbrunner, Siegfried Bauer
Format: article
Language:EN
Published: Nature Portfolio 2018
Subjects:
Online Access:https://doaj.org/article/1e31873fbd8b4e2c8f6b643396f3960f
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexible circuits: anodization makes them all! A simple concept of scanning head-guided anodization is shown to be highly expandable to fabricate various electronic components. A team led by Professor Siegfried Bauer from Johannes Kepler University Linz, Austria develops a universal and patternable printing protocol of anodic oxides for a full range of circuit components for flexible devices. The researchers employ a scanning droplet cell microscope to anodize the pre-deposited thin metal films to form dielectric layers with good control in both lateral dimension and vertical thickness. They demonstrate the versatility of the on-site anodization methods by fabricating oxides-based resistors, diodes, transistors and memristors, and multilayer capacitors with a record-high areal capacity of 4 µF cm−2. The approach is cheap, adaptable, and thus ideal for rapid-prototyping of metal oxides circuits for various applications.