Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Med...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yan M, Zhang Y, Qin HY, Liu KZ, Guo M, Ge YK, Xu ME, Sun YH, Zheng XX
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/1e32a35fdc874eceb66dfa0cb71535f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1e32a35fdc874eceb66dfa0cb71535f7
record_format dspace
spelling oai:doaj.org-article:1e32a35fdc874eceb66dfa0cb71535f72021-12-02T01:13:33ZCytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress1178-2013https://doaj.org/article/1e32a35fdc874eceb66dfa0cb71535f72016-02-01T00:00:00Zhttps://www.dovepress.com/cytotoxicity-of-cdte-quantum-dots-in-human-umbilical-vein-endothelial--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs. Our findings provide important new insights into QDs toxicity and reveal potential cardiovascular risks for the future applications of QDs. Keywords: quantum dots, human umbilical vein endothelial cells, endocytosis, ER stress, apoptosisYan MZhang YQin HYLiu KZGuo MGe YKXu MESun YHZheng XXDove Medical PressarticleQuantum dotsvascular endothelial cellsendocytosisER stressapoptosis.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss Issue 1, Pp 529-542 (2016)
institution DOAJ
collection DOAJ
language EN
topic Quantum dots
vascular endothelial cells
endocytosis
ER stress
apoptosis.
Medicine (General)
R5-920
spellingShingle Quantum dots
vascular endothelial cells
endocytosis
ER stress
apoptosis.
Medicine (General)
R5-920
Yan M
Zhang Y
Qin HY
Liu KZ
Guo M
Ge YK
Xu ME
Sun YH
Zheng XX
Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
description Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs. Our findings provide important new insights into QDs toxicity and reveal potential cardiovascular risks for the future applications of QDs. Keywords: quantum dots, human umbilical vein endothelial cells, endocytosis, ER stress, apoptosis
format article
author Yan M
Zhang Y
Qin HY
Liu KZ
Guo M
Ge YK
Xu ME
Sun YH
Zheng XX
author_facet Yan M
Zhang Y
Qin HY
Liu KZ
Guo M
Ge YK
Xu ME
Sun YH
Zheng XX
author_sort Yan M
title Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
title_short Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
title_full Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
title_fullStr Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
title_full_unstemmed Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
title_sort cytotoxicity of cdte quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/1e32a35fdc874eceb66dfa0cb71535f7
work_keys_str_mv AT yanm cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT zhangy cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT qinhy cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT liukz cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT guom cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT geyk cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT xume cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT sunyh cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
AT zhengxx cytotoxicityofcdtequantumdotsinhumanumbilicalveinendothelialcellstheinvolvementofcellularuptakeandinductionofproapoptoticendoplasmicreticulumstress
_version_ 1718403185074241536