An adiabatic method to train binarized artificial neural networks
Abstract An artificial neural network consists of neurons and synapses. Neuron gives output based on its input according to non-linear activation functions such as the Sigmoid, Hyperbolic Tangent (Tanh), or Rectified Linear Unit (ReLU) functions, etc.. Synapses connect the neuron outputs to their in...
Guardado en:
Autores principales: | Yuansheng Zhao, Jiang Xiao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e37ac851b52403d9e4e101a2e68ed61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synaptic metaplasticity in binarized neural networks
por: Axel Laborieux, et al.
Publicado: (2021) -
Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
por: Sungho Kim, et al.
Publicado: (2019) -
Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
por: Sungho Kim, et al.
Publicado: (2019) -
Training Optimization for Artificial Neural Networks
por: Primitivo Toribio Luna, et al.
Publicado: (2010) -
The duality between particle methods and artificial neural networks
por: A. Alexiadis, et al.
Publicado: (2020)