Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
Abstract For complex machine learning (ML) algorithms to gain widespread acceptance in decision making, we must be able to identify the features driving the predictions. Explainability models allow transparency of ML algorithms, however their reliability within high-dimensional data is unclear. To t...
Guardado en:
Autores principales: | Melvyn Yap, Rebecca L. Johnston, Helena Foley, Samual MacDonald, Olga Kondrashova, Khoa A. Tran, Katia Nones, Lambros T. Koufariotis, Cameron Bean, John V. Pearson, Maciej Trzaskowski, Nicola Waddell |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e3b3aca06414847b486a6e05de1d438 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing
por: Zhibiao Mai, et al.
Publicado: (2017) -
Verifiable Computing Applications in Blockchain
por: Silvio Simunic, et al.
Publicado: (2021) -
A novel system for classifying tooth root phenotypes.
por: Jason Gellis, et al.
Publicado: (2021) -
A novel system for classifying tooth root phenotypes
por: Jason Gellis, et al.
Publicado: (2021) -
Verifiable Badging System for scientific data reproducibility
por: Swapna Krishnakumar Radha, et al.
Publicado: (2021)